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(a) Full-body Collabration

(b) Collabration on Terrain

Collabration on Terrain (payload 5kg)

Full-body Collabration (payload 8kg)

Collabration as Leader

Fig. 1: COLA provides a proprioception-only policy that enables compliant human-humanoid collaboration for carrying diverse objects
across various movement patterns. (a) demonstrates horizontal trajectory coordination where the humanoid adapts to human motion patterns.
(b) illustrates whole-body coordination during collaborative object-lowering tasks. (c) shows COLA acting as the leader in collaboration
with a human to drag a cart up a slope.

Abstract— Human-humanoid collaboration shows significant
promise for applications in healthcare, domestic assistance, and
manufacturing. While compliant robot-human collaboration
has been extensively developed for robotic arms, enabling
compliant human-humanoid collaboration remains largely un-
explored due to humanoids’ complex whole-body dynamics.
In this paper, we propose a proprioception-only reinforcement
learning approach, COLA, that combines leader and follower
behaviors within a single policy. The model is trained in a
closed-loop environment with dynamic object interactions to
predict object motion patterns and human intentions implicitly,
enabling compliant collaboration to maintain load balance
through coordinated trajectory planning. We evaluate our
approach through comprehensive simulator and real-world
experiments on collaborative carrying tasks, demonstrating
the effectiveness, generalization, and robustness of our model
across various terrains and objects. Simulation experiments
demonstrate that our model reduces human effort by 24.7%.

compared to baseline approaches while maintaining object
stability. Real-world experiments validate robust collaborative
carrying across different object types (boxes, desks, stretch-
ers, etc.) and movement patterns (straight-line, turning, slope
climbing). Human user studies with 23 participants confirm an
average improvement of 27.4% compared to baseline models.
Our method enables compliant human-humanoid collaborative
carrying without requiring external sensors or complex in-
teraction models, offering a practical solution for real-world
deployment. Our project website is available at https://
yushi-du.github.io/COLA/.

I. INTRODUCTION

Recent years have witnessed significant progress in hu-
manoid robot development, including agile locomotion [8,
14, 28, 33], teleoperation [12, 26], and dexterous manipula-
tion [19, 27]. While these advances highlight the growing
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versatility and robustness of humanoid control, progress in
enabling humanoid robots to collaborate effectively with
humans remains limited. Human-robot collaborations have
been a long-standing challenge [5, 17, 18, 25, 31, 32], requir-
ing the modeling of diverse human behaviors, adaptive
responses to dynamic interactions, and coordinated planning
for shared tasks. As humanoid robots develop increasingly
reliable motor and control abilities, we argue that addressing
collaboration is both timely and essential to realizing their
central role in supporting human life.

Object carrying [2, 3, 7] has become a representative task
for advancing human-robot collaboration. Its core challenges
arise from adapting to diverse environments (e.g., main-
taining stable support of objects across varying terrains),
responding compliantly to human motions (e.g., standing up
together) often with limited or no direct force sensing, and
dynamically allocating roles such as leading or following
to improve efficiency. These interdependent requirements
make the task particularly difficult for humanoids, as true
collaboration requires integrating all aspects to ease the
human partner, rather than addressing a single constraint as in
prior work on environment-conditioned locomotion [14, 29,
33], compliance behavior learning [23–25, 30], or high-level
intention prediction in open-loop object-finding or serving
tasks [6, 13, 20, 31]. Addressing these challenges requires a
policy that unifies force interactions, implicit constraints,
and dynamic coordination into a coherent framework for
humanoid collaborative carrying.

To address these challenges, we propose a learning-based
policy for human-humanoid collaborative carrying that lever-
ages reinforcement learning to model dynamic and versatile
interactions. The policy allows humanoid robots to share
loads with humans in a compliant manner while flexibly
switching roles between leader and follower. Our design is
built on two key insights: (i) offsets between joint states
and their targets provide a proxy for estimating interaction
forces, and (ii) the carried object’s state encodes implicit
collaboration constraints such as stability and coordination.
To incorporate these, we adopt a teacher-student framework
in which the teacher policy, trained with both propriocep-
tive and privileged object-state information, is learned with
rewards on the humanoid motion (e.g., robust locomotion
across varied terrains) and the object status (e.g., maintaining
a stretcher). The student policy, distilled from the teacher,
relies solely on proprioceptive inputs for real-world inference
and deployment. Role allocation is controlled via a velocity
command, where zero velocity corresponds to following.

We conduct extensive simulation experiments to demon-
strate that COLA reduces human effort by 31.47% in col-
laborative carrying tasks compared to baseline approaches.
Trajectory analysis shows that our method achieves 10.2
cm/s mean linear velocity tracking error and 0.1 rad/s mean
angular tracking error relative to human motion, indicating
precise coordination. Real-world experiments validate that
COLA successfully tracks human movement patterns while
assisting with object lifting, lowering, and transport along
both straight and curved trajectories. The intention of human

are implicitly learned by simple pushing and pulling actions,
without additional commands from remote controls. Human
user studies with 23 participants confirm compliant collab-
orative carrying across diverse scenarios, demonstrating
the practical effectiveness of our approach for human-
robot collaborative object transport.

Overall, our contributions can be summarized as follows:
• We propose a unified residual model that relies solely

on proprioception for whole-body collaborative carry-
ing, enabling compliant, coordinated, and generalizable
collaboration across diverse movement patterns.

• We develop a three-step training framework and
closed-loop training environment that explicitly mod-
els humanoid-object interactions, enabling the robot to
implicitly learn object movements and assist humans
through compliant collaboration.

• We demonstrate our policy in simulation and real-
world settings, where our method achieves superior
effort reduction and trajectory coordination compared
to baseline approaches. The human user study confirms
that our model achieves more compliant collaboration.

II. RELATED WORK

A. Robot-human Collaboration

Robot-human collaboration has been a long-standing re-
search topic spanning from robotic arms to legged robots [10,
13, 20]. While robotic arm-based collaboration systems typ-
ically assist humans in confined workspaces, researchers
increasingly employ humanoid robots to provide assistance
in open environments, leveraging their superior mobility and
human-like morphology. However, current human-humanoid
collaboration methods [5, 17, 32] rely primarily on model-
based approaches. Existing works [1, 2] use heuristic rules
that predefine a set of subtasks, including basic walking
patterns, and identify primitive behaviors necessary for col-
laborative carrying. Some works [15, 16] focus on predicting
human intention from multi-modal data and performing
subtasks accordingly. While H2-COMPACT [3] proposes
a learning-based model that uses haptic cues to predict
horizontal velocity commands, it still operates with limited
scope. All these approaches neglect whole-body coordination
capabilities in human-humanoid collaborative carrying [22],
thus lacking the ability to perform complex collaborative
tasks such as picking up objects from the ground or carrying
objects while climbing slopes. In this work, we propose
a residual learning framework that enables humanoids to
collaborate with humans using whole-body coordination,
significantly broadening the range of collaborative carrying
scenarios that humanoid robots can handle.

B. Compliant Whole-body Control

Position-only control lacks the compliance required for
human-humanoid interaction [9, 25], as it operates without
force awareness. Force regulation is crucial for collabora-
tive tasks [11], particularly those involving human contact.
Recent research [30] has demonstrated the effectiveness of
force and compliance control in contact-rich manipulation
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Fig. 2: Overview of COLA. Our Policy mainly consists of three steps: (i) We train a base whole-body control policy to provide a robust
whole-body controller. (ii) In the closed-loop training environment, we train a residual teacher policy on top of the whole-body control
policy with privileged information for human-humanoid collaboration. (iii) We distill the knowledge from the teacher policy into a student
policy for real-world deployment using behavioral cloning.

tasks [4]. These methods explicitly estimate contact forces
and integrate them into control policies, achieving improved
performance on tasks such as force tracking and compliant
responses to varied force and position inputs. Moreover,
other approaches [24] learn force characteristics implicitly
to enable compliant and force-adaptive behaviors on legged
robots. While these advances demonstrate that incorporating
force feedback provides significant advantages for robotic
interaction tasks, how force-aware control benefits human-
humanoid collaboration remains underexplored. Building on
these insights, we implicitly incorporate force considerations
into our human-humanoid collaborative framework, enabling
more natural and intuitive cooperative interactions.

III. METHODOLOGY

A. Overview

We define the task of human-humanoid Collaborative Car-
rying as a humanoid assisting a human partner to transport
an object that is challenging for a single person due to its
size or weight. We assume the human partner is engaged in
carrying the object, and the robot’s objectives are three-fold:
(i) to coordinate its movement by aligning with the human’s
velocity, (ii) to support the object’s weight, thereby reducing
the human’s physical burden, and (iii) to stabilize the object’s
orientation throughout the transportation.

Our training pipeline is composed of three distinct learning
steps: a. Whole-body controller training, b. Residual
teacher policy training for collaboration, and c. Student
policy distillation. We elaborate on this three-step design in
the subsequent section.

B. Whole-body Control Policy

In the first step, we train a Whole-Body Control
(WBC) policy with no additional constraints in the sim-
ulator, where the goal command is G = [G lower,Gupper],

which consists of a lower-body locomotion goal com-
mand G lower

t ≜ [vlin
t , vang

t , hroot
t ] with velocity and height

commands and an upper-body end-effector goal command
Gupper
t = [pee, ree] specifying target position and rota-

tion. The observations of the WBC policy are defined as
Owbc

t ≜ [qpos
t−l:t, q

vel
t−l:t, ω

root
t−l:t, gt−l:t, a

prev
t−(l+1):t−1] where l is

the length of history observation, qpos
t ∈ RN denotes joint

positions, qvel
t ∈ RN denotes joint velocities, ωroot

t ∈ R4

denotes robot root orientation, gt ∈ R3 for gravity in the
robot root frame and aprev

t ∈ Rn denotes previous actions
under the corresponding time frame. The action space, Awbc,
represents the target joint positions of the N = 29 joints
of the G1 robot, excluding the fingers. We use PD position
control for actuation.

A robust WBC policy serves as the foundation for the
complex task of human-humanoid collaborative carrying.
Building upon previous studies [29, 33], which have demon-
strated the efficacy of reinforcement learning for training hu-
manoid robot loco-manipulation and have achieved notable
success in real-world deployments, we adopt the Proximal
Policy Optimization (PPO) algorithm to conduct reinforce-
ment learning-based training for humanoid collaboration in
our research. Specifically, we train the WBC policy tak-
ing both lower-body locomotion commands [vlin, vang, hroot]
and upper-body end-effector commands [pee, ree]. The end-
effector pose commands, in particular, are generated from a
sampling space detailed in Sec. IV. The policy is formally
defined as:

Fwbc : G × Owbc → Awbc, Awbc ∈ RN .

We train the WBC policy with rewards following prior
works [21, 29]. To improve the robustness under payloads,
we apply external forces to the humanoid’s end-effectors
during training, improving its force-adaptive capabilities.



Fig. 3: Closed-loop Training Environment. This figure illustrates
our closed-loop training environment in simulation. The green arrow
represents the goal velocity of the carried object, while the red arrow
indicates its current velocity.

C. Residual Teacher Policy

In the second training step, we introduce a closed-loop
environment for policy training to explicitly model the dy-
namic interaction between the human, object, and humanoid.
For instance, by placing a simulated box between the robot’s
hands, the hands are forced to move in a particular manner,
as illustrated in Fig. 3. Under these constraints, we train
a residual teacher policy on top of the pre-trained WBC
policy in the closed-loop training environment. The residual
teacher policy takes observations Oteacher

t ≜ [Owbc
t ,Opriv

t ] as
inputs, where the privileged component Opriv

t consists of
Opriv

t ≜ [ṽlin
t−l:t, ṽ

ang
t−l:t, p̃t−l:t, r̃t−l:t] represent the GT states

of the carried object with a history of length l.
Effective human-humanoid collaboration hinges on the

robot’s ability to adapt its collaboration strategy in real-time
to the object’s changing dynamics. To this end, we formulate
the collaboration policy as a residual policy atop the base
whole-body control policy, enabling the model to implicitly
infer collaborative intent directly from physical interaction.
We hypothesize that this implicit learning paradigm is highly
effective for two primary reasons. First, the exploration space
for object dynamics during whole-body controller training
may not fully encompass the motion constraints present in
real-world collaboration. Second, the nuances of physical
interaction are difficult to encode with manually designed,
explicit commands. We validate the efficacy of our approach
through ablation studies detailed in Sec. V.

The second step of our pipeline, illustrated in Fig. 2, in-
volves training a residual teacher policy to build collaborative
skills upon the base whole-body controller. To accurately
model the object’s dynamics, this teacher is granted access
to privileged information (Opriv), which includes the object’s
ground-truth pose and velocity history. The teacher policy,
F teacher, leverages both privileged information and the robot’s
proprioception (Owbc) to output a residual action, Ateacher.
This action represents a corrective adjustment to the whole-
body controller’s output. The policy is defined as:

F teacher : [Owbc,Opriv] → Ateacher, Ateacher ∈ RN ,

Acollab = Awbc +Ateacher.

During this step, the goal command of the model is
modified based on the settings described in Sec. IV. The

TABLE I: Reward Functions for collaboration policy training.

Term Expression Weight

Linear Vel. Tracking ϕ(vCoM
lin − vapplied

lin ) 1.0

Yaw Vel. Tracking ϕ(vCoM
ang − vgoal

ang ) 1.0

Z-axis Vel. Penalty −∥vobj
z ∥ 0.05

Height Diff. Penalty −∥hobj
1 − hobj

2 ∥ 10.0
Force Penalty −|F support-obj| 0.002

*Note: vapplied
lin is the applied end-point linear-velocity(Sec. IV); vgoal

ang is the
target angular velocity of the object; hobj

1 , hobj
2 are the predefined heights

of the object’s far ends; F support-object is the horizontal force between the
support body and object; ϕ(x) = e−∥x∥.

TABLE II: Command Sampling Ranges. The sampling range of
our command. This table mainly consists of whole-body control
commands, collaborative carrying commands.

Term Range

Base Lin. Vel. X (m/s) (−0.8, 1.2)
Base Lin. Vel. Y (m/s) (−0.5, 0.5)
Base Ang. Vel. (rad/s) (−1.2, 1.2)
Base Height (m) (0.45, 0.9)
End-effector Position (m) (0.15)
End-effector Orientation (rad) (π/6)
Support Object Lin. Vel. (m/s) (−0.6, 1.0)
Support Object Ang. Vel. (rad/s) (−0.8, 0.8)
Support Object Height (m) (0.5, 0.85)

*Note: End-effector Position denotes the side length of the cube where the
goal position is sampled from; End-effector Orientation denotes the half-
angle of the cone that defines the sampling range of orientation goals.

teacher’s learning is guided by a composite reward function
that combines base whole-body control rewards with task-
specific rewards, as detailed in Tab. I.

D. Knowledge Distillation

In the distillation step, we transfer the expertise of the
teacher policy (Fwbc+F teacher) into a student policy, F student,
designed for real-world deployment. This student policy
operates without access to privileged information, relying
solely on the proprioceptive observations, Owbc:

F student : Owbc → Astudent, where Astudent ∈ RN .

We use behavioral cloning to distill the teacher policy into
a student policy, training the student to mimic the teacher
by minimizing the mean squared error between their outputs
during interactions with the environment. The optimization
is defined by the following loss function:

Ldistill = E
[
∥Astudent −Acollab∥2

]
.

Furthermore, we define two distinct experimental settings
based on whether the model observes the goal command
during collaboration: COLA-F (Follower) and COLA-L
(Leader). In the COLA-F setting, all networks receive
a goal command input of zero, whereas in the COLA-L
setting, the policy is provided with a sampled goal command
within the same range used for the whole-body controller.



IV. IMPLEMENTATION DETAILS

A. Training Setup

We train our policy in Isaac Lab on a single RTX 4090D
GPU using PPO with 4096 parallel environments. The actor
and critic networks for the base WBC policy are three-
layer Multi-Layer Perceptrons (MLPs) of size (512, 256,
128), while the residual teacher and studnet policy network
employs two additional MLPs with the same dimensions.
The training of the WBC, residual teacher, and distillation
policies takes 350k, 250k, and 250k environment steps,
respectively, which correspond to abot 15k, 10k, and 10k
PPO update steps. The full training time is 48 hours.

B. Observation Space Details

We sample whole-body control commands from a pre-
defined range. The end-effector goal command, representing
the 6−DoF target pose of the robot’s wrist, is generated
using Spherical Linear Interpolation (SLERP). Since our task
focuses on human-humanoid collaborative carrying rather
than complex upper-body manipulation, the robot primarily
needs to execute fine-scale arm adjustments to modify the
object’s pose and velocity. Therefore, we do not sample
large-range upper-body motions. Instead, we sample end-
effector goal commands in the vicinity of the default grasping
pose, with positions randomly sampled within a small cubic
region and orientations within a conical region around the
nominal grasp orientation. We provide the sampling range
details in Tab. II. Our whole-body controller achieves and
tracking error of 5.6cm for end-effector goal position and
7◦ for end-effector goal orientation.

C. Closed-loop Training Environment

To precisely simulate the dynamic interactions in real-
world collaborative carrying tasks, we set up a closed-loop
training environment that explicitly models the interactions
among the object, humanoid, and human, as illustrated
in Fig. 3. The environment consists of the humanoid, a
supporting base body that simulates the human carrier, and
the carried object to be transported, which is connected to
the support body via a 6-DoF joint. Once the environment is
initialized, the object is placed in the robot’s hand, and the
hand joints are fixed in a predefined grasp pose.

During training, we randomly sample a goal command G,
with its range defined in Tab. II. We also sample a velocity
vapplied and apply it to the supporting base body at the end
of the object opposite the robot-held end. The held end is
predetermined for each object type (e.g., the far side of a
box or the handle of a stretcher). We sample the magnitude
of vapplied from the range (0,G) with added random noise
and update it at twice the frequency of the goal command G.
For angular velocity control, we set a target angular velocity
and use a PD controller to apply torque to the support body.
For height control, we randomly sample a target height for
the support body within a predefined range and apply a
PD-controlled force to adjust its height accordingly, without
requiring the robot to maintain a fixed height.

It is worth noting that although the carried object and
the support body are connected through a 6-DoF joint, the
inherent friction, damping, and joint limits ensure that any
movement of the supporting base body directly affects the
object. In this way, the dynamics of the support body are
faithfully transmitted to the carried object.

The optimization objectives are summarized in Tab. I.

V. EXPERIMENTS

A. Overview

In this section, we conduct experiments to evaluate the
effectiveness of COLA. We aim to address the following
key research questions via empirical analysis and discussion:

• Does the residual teacher policy and the distillation
training enable effective and compliant collaboration?

• Is the architecture of COLA designed in a concise and
effective manner?

• Do the results demonstrate practical value in real-
world scenarios, such as assisting humans in object
transportation and reducing physical effort?

B. Baselines

1) Vanilla MLP: We implement the policy as an MLP,
initialize it with the weights of the whole-body con-
troller, and train it end-to-end with PPO.

2) Explicit Goal Estimation: We replace the whole-body
control command with the predicted one, remove the
residual component from the teacher policy, and distill
the resulting policy into the student.

3) Transformer: We replace the student policy’s original
architecture with a Transformer.

C. Metrics

We use the following metrics to evaluate the performance
of the proposed method in terms of trajectory following,
height tracking, and coordination with the human: Linear ve-
locity tracking error (Lin. Vel.): Mean linear velocity tracking
error relative to the human over the entire episode. Angular
velocity tracking error (Ang. Vel.): Mean angular velocity
tracking error relative to the human over the entire episodes.
Height Error (Height Err.): Height tracking error between
the object ends held by the human and humanoid, measuring
stability of height coordination. Average external force (Avg.
E.F.): Average horizontal interaction force between the hu-
man and the object, reflecting human effort required to move
the carried object along the intended direction.

D. Do the residual teacher policy and the distillation train-
ing contribute to effective and compliant collaboration?

We conduct simulation experiments to evaluate the perfor-
mance of our model against baseline methods and analyze
the choice of model architecture. As shown in the upper
part of Tab. III, our method outperforms all baselines across
the evaluated metrics. The superior Lin. Vel., Ang. Vel., and
Height Err. indicate that our model achieves better collabo-
ration with humans, while the highest Avg. E.F. reflects the
strongest compliance exhibited by the model.



TABLE III: Quantitative evaluation in simulation. We report results on velocity and height tracking, as well as the average external
force between the robot and the carried object, to evaluate the effort required for joint carrying and movement.

Methods Lin. Vel. (m/s) ↓ Ang. Vel. (rad/s) ↓ Height Err. (m) ↓ Avg. E.F. (N ) ↓

Explicit Goal Estimation 0.235 0.335 0.102 19.067

Transformer 0.178 0.310 0.077 19.382
COLA-F-History10 0.121 0.131 0.037 15.435
COLA-F-History50 0.116 0.132 0.036 14.574

COLA-F 0.109 0.118 0.031 14.576
COLA-L-History10 0.118 0.106 0.039 13.924
COLA-L-History50 0.112 0.103 0.036 13.495

COLA-L 0.102 0.098 0.038 12.298

(a) Stretcher Carrying (b) Rod Height Tracking

(c) Box Carrying on Slope (d) Cart Pushing
Fig. 4: Qualitative visualizations of human-humanoid collaboration using COLA. This figure showcases our model’s ability to carry
diverse objects and perform collaborative skills such as horizontal-velocity and height tracking, including under challenging conditions
such as sloped terrains. The interacted objects include a 3kg rod, an 8kg box, an 11kg stretcher, and a 20kg cart, demonstrating both
versatility and generalizability of the proposed method.

Although the Vanilla MLP achieves relatively high perfor-
mance among the baseline models, it struggles to accurately
track Ang. Vel. and Height Err.. This result indicates that
linear movements are easier to infer compared to angular
and vertical movements. The teacher-student distillation
framework offers a promising approach to learn these
complex interaction patterns using privileged information
that is difficult to acquire directly.

While the Explicit Goal Estimation baseline performs the
poorest, this result highlights that collaborative carrying is
not merely a task of predicting whole-body control com-
mands. The dynamic interactions among the humanoid, ob-
ject, and human introduce additional challenges for human-
humanoid collaboration. Consequently, implicitly learning
object dynamics and human movements within a closed-

loop environment proves more effective for maintaining
object stability and achieving coordinated collaboration.

E. Is the architecture of COLA designed in a concise and
effective manner?

The lower part of Tab. III presents an ablation study on
different choices of our model architecture of the student
policy. COLA outperforms the Transformer, which requires
twice the number of training steps to converge, demonstrating
that a compact model can achieve superior performance.
This is likely because the Transformer’s long-term temporal
processing introduces unnecessary complexity, whereas the
MLP-based model adapts more promptly to diverse human
movements, which is crucial for collaborative tasks. For
example, when the robot collaboratively carries an object



(a) Sim Force (b) Sim Height

(c) Real Force (d) Real Height
Fig. 5: Quantitative Results on the Effectiveness of Collaborative
Carrying. (a) Illustrates the robot’s velocity with a force applied
to the palm of the robot where the force is linearly increased
throughout a time sequence of 10.0 seconds. (b) Illustrates the
height of the robot’s pelvis over time when applying external forces
on the end-effector of the robot. The solid lines indicate the robot’s
height in the simulator under 10N external forces on each palm,
while dashed lines show the height under 20N forces. (c) Illustrates
the minimal force required to move the robot in the real world. (d)
Illustrates the height difference between the human-held end and
the humanoid-held end of the object in real-world experiments.

with a human and they begin moving from a stationary state,
the robot should focus on the current object motion rather
than earlier frames that encouraged it to stay still. Relying on
outdated information can cause the robot to hesitate between
continuing its movement or stopping, thereby degrading the
smoothness of human–humanoid cooperation.

We also ablate the history length of COLA. We find
that a shorter history provides insufficient information for
the policy to implicitly learn collaboration with human
movements from state observations. Increasing the history
length to 50 yields little improvement. We therefore select
25 as a balance between performance and learning efficiency.
This suggests that the task is not highly sensitive to long-term
joint position changes, consistent with our earlier findings on
the Transformer-based student policy baseline.

F. How compliant is the model to external forces in both
simulation and real-world experiments?

The results in Fig. 5a and Fig. 5b illustrate how the
velocity and height respond to external forces applied along
the humanoid’s x-axis. In Fig. 5a, the baseline model re-
mains nearly stationary, whereas COLA begins to follow
the external force once it exceeds 15N. Forces below 15N
are interpreted as cues for adjusting motion to stabilize
the humanoid rather than for initiating movement. Fig. 5b
illustrates how the humanoid responds to externally applied
vertical forces. The Locomotion policy maintains a nearly
constant height under the applied force, while the Vanilla
MLP squats to a fixed height regardless of the magnitude

TABLE IV: Human study results evaluated by 23 participants on
the performance of Height Tracking and Smoothness.

Methods Height Tracking ↑ Smoothness ↑

Locomotion 2.96 2.61
Vanilla MLP 3.09 3.09

COLA 3.96 3.96

of the ascending force. This indicates that the Vanilla MLP
only supports the external force without actively complying
in the vertical direction. In contrast, both COLA settings
effectively respond to the applied force, demonstrating agile
full-body motions that comply with vertical disturbances.

It is observed that COLA-L consistently outperforms
COLA-F. We attribute this to the goal command, which
helps the policy learn to collaborate with humans more
actively and precisely. When noise and disturbances are
consistently present in dynamic interactions, the goal com-
mand provides additional informative cues that enhance
human-humanoid collaboration.

G. Do the results demonstrate practical value in real-world
scenarios?

We also conduct real-world experiments to validate the ef-
fectiveness of our approach in practical scenarios. Qualitative
results are shown in Fig. 4, demonstrating that our method
achieves promising performance in carrying diverse objects
(e.g., boxes, carts, and stretchers) across various grasping
poses, even on slopes. Additionally, we demonstrate that
our model implicitly learns to interpret human intentions
through force-based interaction. When a human applies di-
rectional forces to guide the robot, the humanoid infers the
desired movement command and continues executing that
motion autonomously. This force-aware adaptation capability
significantly broadens the range of intuitive human-robot
collaboration scenarios. These results highlight performance
that surpasses existing methods.

We quantitatively evaluate our model using the following
metrics: Min. Force: The minimum force required to move
the robot, reflecting the robot’s compliance at the start of
collaborative transportation. Height Diff. The difference in
height between the two ends of the carried object, held by
the human and the humanoid, reflecting the height-tracking
performance.

As shown in Fig. 5c and Fig. 5d, our model reduces
height-tracking error by approximately three-quarters
and demonstrates stronger compliance in following external
forces compared to the baseline. These findings highlight
that our model provides practical assistance for collaborative
carrying tasks in real-world deployment by maintaining
stable object pose tracking while reducing the physical effort
required from the human operator.

We also recruited 23 participants to rate the compliance
and height-tracking ability of COLA during the carrying
process on a scale from 1 to 5. To reduce personal bias
and ensure fair evaluation, we recorded the collaboration



(a) Kicking torso (b) Dragging hand

Fig. 6: Movement Analysis. When a continuous external force is
applied to the robot’s torso, it resists to maintain a stable stance. In
contrast, when a smaller force is applied to the robot’s end-effector,
it tends to follow the force.

videos, shuffled their order, and published them online for
participants to provide ratings. The results of our user
study, shown in Tab. IV, indicate that COLA achieves the
highest performance in both metrics. These findings further
demonstrate that our model provides effective assistance to
humans in real-world scenarios.

H. Implicitly estimating interaction forces from joint states.

We observe that the humanoid’s behavior during trans-
portation is primarily sensitive to forces applied at specific
joints. As shown in Fig. 6, when humans apply forces to the
hand or arm during carrying, the humanoid tends to follow
the human’s lead. In contrast, when forces are applied to
other joints, such as the torso or legs, the humanoid remains
stable. These results demonstrate that our model effectively
learns the interaction dynamics among the humanoid,
object, and human through the offsets between joint
states and their targets.

VI. CONCLUSIONS AND LIMITATIONS

In this paper, we present a unified approach for human-
humanoid collaboration featuring a three-step residual learn-
ing framework that enables the humanoid to operate in
two cooperation modes: leader or follower. Our method
distills privileged object state information into a student
policy that operates solely on proprioceptive feedback, en-
abling compliant and generalizable whole-body coordination
without external sensors. We also propose a closed-loop
training environment that explicitly models humanoid-object
interactions, allowing the robot to infer human movement
and adapt through compliant collaboration implicitly.

While our approach achieves effective human-humanoid
collaboration through proprioception, multi-modal percep-
tion for human-humanoid collaboration remains worth ex-
ploring, as visual and tactile sensors provide more infor-
mative cues. Moreover, enabling humanoids to plan au-
tonomously to assist humans is also valuable for future
research. We hope our research provides insights for human-
humanoid interaction and opens new directions for human-
humanoid collaborative applications.
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