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AlphaChimp: Tracking and Behavior
Recognition of Chimpanzees
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Andres Meza , Yixin Zhu � , Federico Rossano � , and Yizhou Wang �

Abstract—Understanding non-human primate behavior is crucial for improving animal welfare, modeling social behavior, and gaining
insights into both distinctly human and shared behaviors. Despite recent advances in computer vision, automated analysis of primate
behavior remains challenging due to the complexity of their social interactions and the lack of specialized algorithms. Existing methods
often struggle with the nuanced behaviors and frequent occlusions characteristic of primate social dynamics. This study aims to
develop an effective method for automated detection, tracking, and recognition of chimpanzee behaviors in video footage. Here we
show that our proposed method, AlphaChimp, an end-to-end approach that simultaneously detects chimpanzee positions and
estimates behavior categories from videos, significantly outperforms existing methods in behavior recognition. AlphaChimp achieves
approximately 10% higher tracking accuracy and a 20% improvement in behavior recognition compared to state-of-the-art methods,
particularly excelling in the recognition of social behaviors. This superior performance stems from AlphaChimp’s innovative
architecture, which integrates temporal feature fusion with a Transformer-based self-attention mechanism, enabling more effective
capture and interpretation of complex social interactions among chimpanzees. Our approach bridges the gap between computer vision
and primatology, enhancing technical capabilities and deepening our understanding of primate communication and sociality. We
release our code and models at project page and hope this will facilitate future research in animal social dynamics. This work
contributes to ethology, cognitive science, and artificial intelligence, offering new perspectives on social intelligence.

Index Terms—Computer Vision, CV for Animals, Primatology
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1 INTRODUCTION

Background and challenges

S Tudying the behavior of non-human primates is essen-
tial for gaining insights into human evolution [1] and

improving animal welfare [2], [3]. Given the close phylo-
genetic relationship between humans and non-human pri-
mates, it provides an ethically sound and effective avenue
to study the origins of human sociality [4]. Traditional field
research typically requires researchers to enter wildlife con-
servation areas for extended durations, sometimes spanning
multiple years. This involves habituating primate groups to
human presence, capturing video footage, and laboriously
manually coding these videos for subsequent statistical
analysis [5], [6], [7], [8], [9].

While video coding is heralded as the gold standard for
distilling rich, nuanced behavioral patterns [10], its practical
utility hinges on the efficiency of the coding process. This
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process demands researchers with specialized expertise and
is also prone to attentional biases. The time- and labor-
intensive nature of manual coding, coupled with the po-
tential for human error, presents significant challenges to
the field. These limitations underscore the need for more
efficient and objective methods of analyzing primate be-
havior, which could potentially accelerate research progress
and enhance the reliability of findings in this crucial area of
study.

Recent advances in computer vision offer promising
avenues for the automated analysis of non-human primate
behaviors, particularly chimpanzees. However, the paucity
of high-quality longitudinal datasets remains a significant
impediment to progress in this field. Assembling compre-
hensive chimpanzee behavioral data is an arduous task that
demands substantial resources and specialized expertise.
This process involves continuous video recording coupled
with meticulous manual annotation, with a paramount em-
phasis on annotation accuracy and consistency.

Existing primate datasets present various limitations.
Some, such as those developed by [11] and [12], restrict
subjects to indoor enclosures, resulting in atypical and con-
strained environments that may not accurately represent
natural behaviors. Others, including works by [13], [14],
[15], and [16], rely on sourcing and labeling primate images
from online resources. While these approaches offer certain
advantages, they often fail to capture the complex social
dynamics inherent to group-living primates such as chim-
panzees. This oversight significantly limits comprehensive
studies of chimpanzees’ social behaviors and relationships,
which are crucial aspects of their natural behavior patterns.
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Swela | resting Swela | resting Swela | resting Swela | resting

Ulla | resting Ulla | resting

Azibo | sol. obj. playing

Ulla | manipulating obj.

Azibo | sol. obj. playing

Ulla | resting

Azibo | sol. obj. playing
Azibo | sol. obj. playing
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Azibo | moving

Corrie | resting

Azibo | being carried
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Azibo | being carried

Swela | carrying, moving

Fig. 1: Sample frames and annotations from the ChimpACT dataset. We present three video sequences where an infant
chimpanzee, named Azibo, is focused. While we also annotate visibility for both the bounding box and the keypoint, these
are omitted here for clarity.

The ChimpACT dataset
To address existing dataset limitations, we introduce
ChimpACT, a comprehensive longitudinal dataset for in-
depth study of chimpanzee social behavior in a semi-
naturalistic setting, with annotations including instance
bounding boxes, body poses, and spatial-temporal action
labels. A comparison with other datasets is provided in
Tab. 1. ChimpACT focuses on a specific chimpanzee group at
Leipzig Zoo, Germany, particularly a juvenile male named
Azibo (illustrated in Fig. 1)1. The data, collected from 2015 to
2018 using focal sampling [17], covers Azibo’s development
since birth within a group characterized by well-defined kin
relationships (depicted in Fig. 2a). The dataset encompasses
the daily activities of over 20 chimpanzees, comprising 163
video recordings with approximately 160,500 frames and
a total duration of about 2 hours. This extensive coverage
allows for comprehensive analysis of chimpanzee behavior
and social dynamics in a setting closely approximating their
natural habitat, offering a unique perspective on individual
development within a chimpanzee community.

ChimpACT features comprehensive annotations, encom-
passing each individual’s detection, tracking, identification,
pose estimation, and spatiotemporal action labels, as illus-
trated in Fig. 1. To ensure data precision, each chimpanzee’s
identity is verified by an experienced behavioral researcher
familiar with the Leipzig group. A key feature of ChimpACT
is the implementation of a detailed ethogram (Fig. 2b), de-

1. Details about Azibo can be found at https://tinyurl.com/
azibo-chimp/.

veloped by the same expert, for fine-grained action labeling.
This custom-designed ethogram categorizes behaviors into
locomotion, object interaction, social interaction, and other
actions, each encompassing several detailed sub-categories
annotated in our dataset. To our knowledge, ChimpACT is
the first to provide ethogram annotations specifically for
the machine learning and computer vision community. This
ethogram-based annotation system represents a significant
advancement in bridging traditional methods in primatol-
ogy and modern computational approaches, providing a
standardized, biologically relevant framework for behavior
classification. By integrating this comprehensive ethogram,
ChimpACT not only offers rich behavioral data but also
ensures that the annotations are grounded in established
primatological research methods, enhancing its utility for
both behavioral and computational studies.

While computer vision has made significant strides in
human-centric tasks, such as human pose estimation [23],
[24], progress on chimpanzee-specific challenges has been
limited by the scarcity of suitable datasets. Despite their
close genetic relationship to humans [4], recognizing chim-
panzee behaviors presents unique challenges due to their
distinct morphology, appearance, and keypoint articulation.
We evaluated prominent human perception methods on
three key tracks: (i) detection, tracking, and Re-Identification
(ReID), (ii) pose estimation, and (iii) spatiotemporal ac-
tion detection. Our findings reveal that existing methods
struggle with our chimpanzee-specific dataset, with par-
ticular deficiencies in social behavior detection. These re-

https://tinyurl.com/azibo-chimp/
https://tinyurl.com/azibo-chimp/
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TABLE 1: Comparison of ChimpACT with existing primate behavioral datasets. Square-bracketed numbers denote label counts
for the chimpanzee category. ⊘ denotes undocumented. For the “Species” row, G represents general, P for primates, M for
macaques, C for chimpanzees, and C+g for chimpanzees and gorillas. In the “Source” row, I stands for Internet, Z for zoo, C for
cage, W for wild, and CP for captive.

Dataset Species
Track 1 Track 2 Track 3

Sourcedetection, tracking, ReID pose estimation action recognition

ID # frame # box # track frame # pose # track dim. class # label #

AP-10K 13,028
[18] G ✗ ✗ ✗ ✗ 10,015 [<500] ✗ 2D ✗ ✗ I

AnimalKingdom 99,297 30,100
[15] G ✗ ✗ ✗ ✗ 33,099 [576] ✗ 2D 140 [⊘] I

OpenApePose 71,868
[14] P ✗ ✗ ✗ ✗ 71,868 [18,010] ✗ 2D ✗ ✗ I

OpenMonkeyChallenge 111,529
[16] P ✗ ✗ ✗ ✗ 111,529 [<10,000] ✗ 2D ✗ ✗ I & Z

OpenMonkeyStudio 33,192 C
[12] M ✗ ✗ ✗ ✗ 194,518 [0] ✓ 3D ✗ ✗ (6.7m2)

MacaquePose 16,393
[13] M ✗ ✗ ✗ ✗ 13,083 [0] ✗ 2D ✗ ✗ I & Z

SIPEC 2,200 C
[11] M 4 191 [0] ✓ ✗ ✗ ✗ ✗ 4 ⊘ (15m2)

PanAf20K 179,956 201,516
[19] C+g ✗ [⊘] ⊘ ✗ ✗ ✗ ✗ ✗ 9 [⊘] W

CCR
[20] C 13 936,914 1,937,585 ✓ ✗ ✗ ✗ ✗ ✗ ✗ W

ChimpBehave
[21] C ✗ 12,000 ⊘ ✗ ✗ ✗ ✗ ✗ 7 ⊘ Z

ChimpACT (Ours) C 23 160,500 56,324 ✓ 16,028 56,324 ✓ 2D 23 64,289 CP
[22] (4400m2)
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Fig. 2: (a) Kinship of the observed chimpanzee group. Rectangles and ellipses represent males and females, respectively, with
arrows flowing from the parents to the child. A missing entry arrow indicates that one of the parents is unknown. Their vertical
position relative to the time axis indicates the year of birth. (b) Ethogram with annotated behaviors.

sults underscore the necessity for developing sophisticated,
chimpanzee-specific perception models that can accurately
capture the nuances of their behavior and social interactions.

AlphaChimp for tracking and behavior recognition
To address these challenges, we introduce AlphaChimp,
the first fully integrated, end-to-end model specifically de-
signed for chimpanzee detection, tracking, and behavioral
recognition in video streams (Fig. 6). AlphaChimp leverages
a DETR-based architecture [25], [26], [27] to simultaneously
detect and classify chimpanzees while recognizing their
behaviors within a unified framework. Key features of
AlphaChimp include multi-resolution temporal information
integration, which aggregates crucial contextual cues to en-
hance tracking and behavioral recognition, and the attention
mechanism to explore spatial relationships, significantly

improving the precision of both tracking and behavioral
recognition. By focusing on both contextual and temporal
dynamics, AlphaChimp substantially enhances the accu-
racy of recognizing complex social behaviors among chim-
panzees. This comprehensive approach allows AlphaChimp
to capture the nuances of chimpanzee behavior more effec-
tively than existing human-centric models, particularly in
the context of social interactions.

Experiments on the ChimpACT dataset demonstrate that
AlphaChimp not only streamlines the perception of pri-
mate videos but also significantly enhances accuracy. Our
integrated approach yields approximately a 10% accuracy
increase in tracking evaluation protocols, validating its ef-
fectiveness in complex scenarios. Notably, AlphaChimp out-
performs State-of-the-Art (SOTA) action detection models,
achieving a 20% improvement in the accuracy of detecting
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social interactions. As the first model to provide end-to-end
detection and behavior recognition of chimpanzees in a uni-
fied framework, AlphaChimp achieves SOTA performance
across multiple tasks. This new approach highlights the po-
tential of specialized, integrated models to advance primate
behavioral research, providing a powerful tool for analyzing
complex chimpanzee behaviors and social dynamics.

Summary

A preliminary version of this work was presented at
NeurIPS 2023 [22]. In this expanded study, our contributions
are threefold:

• We introduce AlphaChimp, the first end-to-end and uni-
fied framework designed for automated detection, track-
ing, and fine-grained behavioral recognition of chim-
panzees in video footage.

• AlphaChimp achieves notable improvement over all ex-
isting SOTA models on the ChimpACT benchmark across
diverse tasks, with a 10% improvement in tracking and a
20% improvement in behavior recognition, despite those
models being specifically tailored for each task. This
highlights the versatility of our method, with significant
advancements in recognizing social behaviors.

• This unified framework and the ChimpACT dataset col-
lectively offer a new resource and platform for the com-
munity for advanced techniques for better perception of
chimpanzees, ultimately contributing to a deeper under-
standing of non-human primates.

These advancements represent a significant step for-
ward in automated primate behavior recognition, offering
new possibilities for comprehensive and accurate studies of
chimpanzee social dynamics and behaviors from video data.

2 RELATED WORK

2.1 Computer vision for animals

In recent years, several new datasets and benchmarks lever-
aging computer vision techniques to advance animal re-
search have been introduced. These efforts span a wide
range of species and tasks. For example, 3D-ZeF20 [28] intro-
duces 3D tracking of zebrafish to the Multi-Object Tracking
(MOT) benchmarks, while AnimalTrack [29] focuses on
multi-animal tracking across various species. In the realm
of pose estimation, AP-10K [18] and APT-36K [30] address
this task for diverse species. AnimalKingdom [15] extends
the scope to fine-grained multi-label action recognition.
Several studies explore multi-agent behavior understanding
from a social interaction perspective [31], [32]. KABR [33]
contributes by collecting videos from drones flown over
the Mpala Research Centre in Kenya. Recently, PanAf20K
[19] curated a dataset for chimpanzee behavior recognition,
but it lacks clear social bonds or fine-grained ethogram.
Distinctively, ChimpACT stands out as a comprehensive
benchmark, encompassing three varied downstream tasks
and featuring detailed annotations of social interactions
within the same chimpanzee group. This enables a nuanced,
longitudinal analysis of chimpanzee social dynamics.

2.2 Human video datasets
In contrast to animal-centric video datasets, a more substan-
tial collection exists for human subjects, addressing diverse
human-centric video understanding tasks. These datasets
cover a wide range of applications in computer vision. For
multi-person tracking, the MOT Challenge [34] serves as a
primary benchmark. Human pose estimation is well-served
by datasets such as COCO [35] and MPII [36], which provide
extensive annotations for body keypoints. In the domain of
action recognition, datasets like Kinetics [37], ActivityNet
[38], and AVA [39] offer large-scale video collections with
diverse human activities. While ChimpACT encompasses
analogous tasks to these human-centric datasets, it intro-
duces unique challenges specific to chimpanzee behavior.
This approach allows for the adaptation and advancement
of human-centric computer vision techniques to the study
of non-human primates, bridging the gap between human
and animal behavior analysis.

2.3 Datasets on primate behavioral understanding
Most existing primate datasets focus primarily on individ-
ual primate detection and pose estimation, with limitations
that hinder behavioral analysis in context. Datasets derived
from confined laboratory settings [11], [12] may induce
atypical behavioral patterns and constrain the expression of
species-typical behaviors, while those collected from online
sources [13], [14], [15], [16] often lack longitudinal interac-
tions crucial for analyzing chimpanzee social dynamics. The
CCR dataset [20], chronicling 13 chimpanzees in the Bossou
forest over two years, primarily focuses on individual de-
tection and recognition, lacking behavioral annotations nec-
essary for studying the social dynamics of wild primates.

Recent efforts like PanAf20K [19] include behavioral
annotations but provide either coarse labels or only limited
fine-grained annotations (in PanAf500) with minimal focus
on social behaviors. It also lacks detailed information on
social relationships, longitudinal observation, and keypoint
annotations. The ChimpBehave dataset [21], introduced to
explore cross-dataset generalization, covers only a short
period and lacks social behavior data, making it unsuitable
for studying chimpanzee social development.

In contrast, ChimpACT offers a multifaceted approach,
encompassing identities, kinship, detection labels, pose
annotations, and fine-grained action labels based on an
ethogram. The features and size of our dataset position it
as a highly relevant benchmark and tool for developing
advanced automated chimpanzee behavior analysis meth-
ods and enhancing the overall understanding of primate
behavior. Tab. 1 provides a detailed comparison, highlight-
ing the unique features of ChimpACT. Despite the recent
introduction of newer chimpanzee datasets, ChimpACT [22]
remains the most comprehensive dataset available today,
addressing the limitations of existing datasets.

2.4 Computational methods for primate behavioral
analysis
Categorizing and analyzing behavior is instrumental in un-
derstanding primate social dynamics and cognitive abilities.
Behavioral analysis often encompasses subtasks like indi-
vidual detection, tracking, and identification [11], [20], pose
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estimation [10], [13], [14], [40], and behavior recognition
[15], [41], [42]. While each task has specialized techniques,
many are rooted in human behavioral research. Numerous
algorithms exist for human tracking [43], [44], pose esti-
mation [23], [24], and behavior recognition [45]. However,
due to the scarcity of relevant primate datasets, primate
behavioral analysis often repurposes algorithms designed
for humans, including:
• Detection, tracking, and ReID identify individual pri-

mates in videos, often leveraging established object or
human detection algorithms like Mask-RCNN [46]. For
instance, SIPEC [11] employs Mask-RCNN with a ResNet
backbone [47] to track and segment macaques. The
method uses a region proposal network (RPN) to generate
candidate bounding boxes, followed by a classification
and segmentation head to refine the detections. [20] uti-
lize CNNs to crop and identify individual chimpanzees,
implementing a two-stage approach where a detector first
localizes chimpanzees, followed by a separate CNN for
individual identification.

• Pose estimation discerns primate poses, frequently adapt-
ing human pose estimation methods like SimpleBaseline
[24]. DeepLabCut [40], [48], for instance, employs ResNet-
50 with ImageNet pre-trained weights for 2D animal pose
estimation. It uses a fully convolutional architecture to
predict heatmaps for each keypoint, allowing for precise
localization of body parts. SIPEC [11] modifies Simple-
Baseline for 2D macaque poses, adapting the keypoint
configuration to match macaque anatomy and fine-tuning
the model on macaque-specific data.

• Behavior recognition identifies primate actions and in-
teractions. Contemporary methods [41], [49] often derive
from human action recognition algorithms like SlowFast
[50]. Notably, [41] integrates audio cues for classifying two
simple non-interactive behaviors: nut cracking and but-
tress drumming. Their approach combines visual features
extracted from a 3D CNN with audio features processed
through a separate neural network, fusing the modalities
for final classification. ChimpVLM [42] leverages text to
enhance the recognition of behaviors across 9 non-social
classes, employing a vision-language model that aligns
visual features with textual descriptions of behaviors to
improve classification accuracy.

In contrast, we propose AlphaChimp, a unified frame-
work capable of simultaneously detecting chimpanzees and
recognizing over 20 behavior classes defined in ChimpACT’s
ethogram. It demonstrates superior performance compared
to task-specific methods by leveraging a single end-to-end
architecture that jointly optimizes multiple tasks, allowing
for more efficient feature sharing and context utilization
across detection and behavior recognition.

3 CHIMPACT

3.1 Dataset description

ChimpACT is a comprehensive collection of high-resolution
video footage documenting chimpanzees at the Leipzig
Zoo in Germany from 2015 to 2018. The dataset comprises
approximately 2 hours of recordings, focusing primarily on
Azibo, a male chimpanzee born in April 2015 to Swela.

(a) aerial view of Leipzig Zoo

(b) indoor enclosure (c) outdoor enclosure
Fig. 3: Semi-naturalistic habitats at Leipzig Zoo. (a) The aerial
view of Leipzig Zoo [53], including both indoor and outdoor
enclosure. (b) An example scene inside the indoor enclosure
[54]. Photo used under CC BY-SA 4.0. (c) An example scene of
the outdoor enclosure.

Azibo has been a member of the A-chimpanzee group
since birth, providing a unique opportunity for longitudi-
nal observation of his behavioral development and social
interactions. The A-chimpanzee group, comprising more
than 20 individuals, is among the most extensively studied
cohorts of zoo-residing chimpanzees. Numerous behavioral
and cognitive studies, both observational and experimental,
have been conducted on this group [51], [52].

ChimpACT’s longitudinal nature offers an unprece-
dented window into Azibo’s growth, social interactions,
and intra-group relationships within this complex social
environment. The dataset captures a wide range of
behaviors and social dynamics, making it an invaluable
resource for researchers studying primate behavior, social
cognition, and development. The high-resolution footage,
combined with detailed annotations and the diverse
social composition of the group, positions ChimpACT
as a unique tool for in-depth analysis of primate social
dynamics and individual development. It offers researchers
the opportunity to examine subtle behavioral cues, track
changes over time, and explore the intricate social fabric of
chimpanzee society in a semi-naturalistic setting.

Longitudinal data. ChimpACT contains footage of a stable
zoo-residing chimpanzee group over a four-year observa-
tional period, providing a unique longitudinal perspective
on chimpanzee behavior development. This extended time-
frame allows for comprehensive tracking of a young chim-
panzee’s growth and social interactions within the group
context. Such longitudinal data offers valuable insights into



6

several critical aspects of chimpanzee development.

The dataset enables the study of chimpanzee
socialization processes and the evolution of social skills [55],
the examination of social bond formation, and the gradual
integration of individuals into the group’s dominance
hierarchy [56]. Furthermore, the longitudinal nature of
ChimpACT permits the investigation of the acquisition
and transmission of group-specific cultural behaviors [57],
[58]. By capturing developmental trajectories over time,
ChimpACT provides a unique opportunity to study the
progression of social behaviors and relationships within
a chimpanzee community. This longitudinal approach
deepens our understanding of the interaction between
individual growth and group dynamics in primate societies,
making it a valuable resource for analyzing chimpanzee
social behavior and cognition.

Semi-naturalistic and social environment. The videos in
ChimpACT capture chimpanzees in their semi-naturalistic
habitats at Leipzig Zoo, split between indoor (96 videos)
and outdoor (67 videos) enclosures; see also Fig. 3. The
indoor space (Fig. 3b), spanning roughly 400 m2, features
a plethora of environmental enrichments, ranging from 15
wooden climbing structures with heights ranging from 2
to 5 meters, 8 hammocks, vegetation consisting of over 20
plant species, and 12 foraging boxes designed to simulate
natural food-finding behaviors. When weather permits,
the chimpanzees have access to a 4000 m2 outdoor area
(Fig. 3c), This expansive space features abundant vegetation,
including 30 trees of various species, and is bordered by a
3-meter wide artificial river. The outdoor environment is
further enhanced with enrichments similar to those in the
indoor space. This area presents additional complexities
for video analysis due to variable weather conditions
and spatial arrangements. This blend of environments
ensures the dataset’s relevance for both naturalistic and
artificial environments. The multifaceted physical and
social surroundings of the chimpanzees further imbue the
dataset with intricate behaviors and social dynamics.

Ethogram with solitary and social behaviors. ChimpACT
captures the daily life of group-living chimpanzees, offering
invaluable insights into the evolution and sustenance of
their social behaviors and relationships [59]. By focusing
on a juvenile chimpanzee, ChimpACT illuminates facets
of social learning, communication, bonding, and more, all
pivotal in the social and ecological life of chimpanzees [60].
To systematically represent these behaviors, we compose
an ethogram, a detailed catalog of behavioral categories,
depicted in Fig. 2b. This ethogram organizes behaviors into
four primary categories, like locomotion and social inter-
action, each further subdivided into several fine-grained
actions, meticulously annotated and validated with expert
oversight. By delving into these behaviors, ChimpACT elu-
cidates not only the social dynamics shaping social rela-
tionships but also the cognitive and ecological influences
on juvenile chimpanzee behaviors. For more details of the
ethogram and its constituent behavioral categories, readers
are directed to Sec. A1.1.

3.2 Dataset collection
The focal video data were collected with the Chimpanzee-A
group housed at Leipzig Zoo, Germany, using focal sam-
pling [17]. Videographers were instructed to focus on Azibo
and his mother, Swela, but also on capturing the environ-
mental context and his interactions with other chimpanzees.
Videos from ChimpACT were sampled from a larger set of
around 405 hours of longitudinal focal video recordings
of the dyad between 2015 and 2018. These videos were
recorded by several research assistants during the daytime
(7am–4pm) using tripod-mounted RGB cameras. Two JVC
Everio camera models were utilized across the years, filming
with a framerate of 25 (Codec H.264) and with resolutions
of 720×578 and 1280×720, respectively. The mother-infant
dyad was filmed for about five hours each week during the
observation period. The footage contains both optical zoom
and camera movements.

3.3 Dataset tasks and annotations
ChimpACT supports three tracks: (i) chimpanzee detection,
tracking, and ReID, (ii) chimpanzee pose estimation, and
(iii) spatiotemporal action detection. We provide fine-
grained annotations for each track. From the extensive
footage, we curated 163 video clips, each approximately
1000 frames in length. Fifteen adept annotators were then
tasked with annotating bounding boxes, body keypoints,
and fine-grained behavioral classes for each chimpanzee
at intervals of every 10 frames. To ensure accuracy and
consistency, a behavioral researcher familiar with the
chimpanzee group meticulously reviewed and refined the
identity and behavioral class annotations. For a deeper dive
into the annotation process and its quality, please refer to
Sec. A1.2 and our dedicated project page, which provides
additional resources and information.

Detection, tracking, and ReID. This task encompasses
the detection and tracking of individual chimpanzees
across video sequences, subsequently coupled with their
re-identification. ChimpACT features over 23 distinct
chimpanzee individuals, each identified by a primate expert
familiar with the Leipzig A-group chimpanzees. Initially,
annotators were instructed to delineate the bounding box
of each chimpanzee, ensuring consistent box IDs for the
same individual throughout a video clip. Subsequently, the
expert matched these box IDs with the corresponding true
names of the chimpanzees, resulting in the identification
of 23 unique individuals. Additionally, every annotated
bounding box is attached with a visibility attribute,
indicating if the chimpanzee is fully visible, truncated,
or occluded in a given frame. Such visibility annotations
can support the reasoning of the chimpanzee behavior,
potentially bolstering tracking robustness. Fig. 4a illustrates
the occurrence frequency (on a log scale) of each individual,
revealing a long-tail distribution. This pattern aligns with
the focal sampling strategy, where Azibo is the primary
subject. Notably, Swela, Azibo’s mother, also exhibits a high
occurrence frequency, resonating with prior studies [61].

Pose estimation. Pose estimation aims to predict the
locations of the chimpanzee joints that have semantic

https://shirleymaxx.github.io/ChimpACT/
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Fig. 4: (a) Log-scale distribution of annotations per individual (b) Log-scale distribution of annotations per behavior.

TABLE 2: Keypoint definitions for chimpanzee.

No. Definition No. Definition

0 Root of hip 8 Right eye
1 Right knee 9 Left eye
2 Right ankle 10 Right shoulder
3 Left knee 11 Right elbow
4 Left ankle 12 Right wrist
5 Neck 13 Left shoulder
6 Upper lip 14 Left elbow
7 Lower lip 15 Left wrist

meaning, such as the knee and shoulder, from an input
image. There are four keypoints on the chimpanzee’s face
(i.e., two for the eyes, and one each for the upper and lower
lips), for a total of 16 chimpanzee keypoints (refer to Tab. 2
and Fig. 5). Annotators are tasked with marking the 2D
joint coordinates and the visibility status of each joint. We
adopt the visibility protocol from the COCO 2D human
keypoint annotations [35], where a value of 0 indicates
a joint outside the image frame, 1 signifies an obscured
joint within the image, and 2 designates a clearly visible
joint. Such an annotation protocol affords reason about
chimpanzee’s orientation and action based on facial joint
visibility. For instance, the chimpanzee might be eating
something if the two lips are apart. Sample frames showing
pose annotations are depicted in Fig. 1. Notably, ChimpACT
holds the potential for future expansion to encompass pose
tracking tasks, analogous to the PoseTrack [62] for humans.

Spatiotemporal action detection. Spatiotemporal action
detection seeks to attribute one or multiple behavioral labels
to each bounding box containing a chimpanzee, leverag-
ing the spatiotemporal context within a video clip. Our
ethogram, detailed in Fig. 2b, delineates 23 nuanced subcat-
egories of behaviors and guides the fine-grained annotations
of chimpanzee behavior, such as “climbing” within the
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15

Fig. 5: Keypoint definitions for chimpanzee.

“locomotion” category. Notably, within the realm of social
interactions, we meticulously differentiate between the ac-
tion performer and receiver. For instance, the grooming be-
havior is bifurcated into “grooming” and “being groomed.”
Every chimpanzee in a frame has its subcategory behavior
annotated. It is not uncommon for an individual to simulta-
neously exhibit multiple behaviors, exemplified by Swela’s
“carrying” and “moving” actions in Fig. 1. The distribution
of these behavioral annotations, visualized in Fig. 4b on
a log scale, reveals a long-tail distribution, mirroring the
authentic behavioral tendencies of chimpanzees in their
natural habitats. We provide more details of the ethogram
and the annotation distribution statistics in Sec. A1.1.

ChimpACT emerges as an invaluable resource for re-
searchers spanning the domains of primatology, compar-
ative psychology, computer vision, and machine learning.
It furnishes a comprehensive and varied array of annota-
tions, paving the way for in-depth analysis of multifaceted
chimpanzee behaviors and catalyzing the development of
advanced machine learning algorithms. The inherent long-
tail distribution presents a formidable challenge for chim-
panzee identification and behavior recognition and beckons
explorations into few-shot learning in future endeavors.
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Fig. 6: Overview of AlphaChimp. Given a sequence of adjacent video frames, AlphaChimp predicts a set of detection boxes for
the target frame and simultaneously identifies the class label and behaviors within each bounding box. Initially, a video backbone
extracts multi-scale video features {Vi}Si=1. These features are then processed by a fusion module that aggregates the temporal
context, resulting in {Fi}Si=1. Subsequently, a transformer-based encoder-decoder converts the flattened multi-scale feature tokens
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refines these queries to generate the bounding boxes as well as the class labels and behaviors within each box.

4 ALPHACHIMP

In this section, we present AlphaChimp, a comprehen-
sive and unified framework for video-based chimpanzee
detection and behavior recognition. Fig. 6 provides an
overview of AlphaChimp’s architecture. To detect and rec-
ognize chimpanzees and their behaviors in a target frame,
we leverage temporal context from adjacent video frames.
Our approach extracts multi-scale features, {Vi}Si=1, using
a video backbone network (Sec. 4.1). These features are then
fused to obtain {Fi}Si=1 and flattened (Sec. 4.2), creating a
unified representation of spatial and temporal information.

The core of AlphaChimp is an encoder-decoder archi-
tecture, inspired by the DETR model [25] but tailored for
our specific task. This Transformer-based structure utilizes
a combination of content and position queries to process
the fused features (Sec. 4.3). The encoder-decoder simultane-
ously optimizes for chimpanzee detection and behavior clas-
sification, enabling AlphaChimp to identify bounding boxes
containing chimpanzees and categorize their behaviors in
an end-to-end manner. By integrating these components,
AlphaChimp ensures robust detection, categorization, and
behavior analysis of chimpanzees within dynamic video
contexts.

4.1 Multi-scale temporal feature extraction
To extract multi-resolution temporal features, we employ
Video Swin Transformer [63] as our backbone. This archi-
tecture processes a video sequence of T frames, where each
frame is composed of H×W ×3 pixels. The backbone treats
each 3D patch of size 2× 4× 4× 3 as a token, enabling it to
capture both spatial and temporal information effectively.

The initial 3D patch partition layer transforms the input
into T

2 × H
4 × W

4 3D tokens, with each token represented
by a Cin-dimensional feature vector. This transformation
sets the stage for subsequent processing through a series
of S Video Swin Transformer blocks [63], each generating
temporal features at different resolutions.

Each block incorporates a linear projection layer, adher-
ing to the standard practice outlined in [63]. These projection
layers perform patch merging along the spatial dimensions,
progressively reducing spatial resolution while increasing
feature dimensionality. It’s worth noting that the linear
projection in the first block is an exception, as it maintains
the original spatial dimensions.

The output of this process is a set of S multi-scale
temporal features, denoted as {Vi}Si=1, where each feature
Vi is extracted from its corresponding block. This multi-
scale approach allows our model to capture both fine-
grained details and broader contextual information, crucial
for accurate chimpanzee detection and behavior recognition.

For a more detailed description of the architecture, in-
cluding specific layer configurations and feature dimen-
sions, we refer readers to Sec. A4.

4.2 Temporal feature fusion

The multi-scale temporal features extracted by the backbone
network provide essential contextual information for pre-
dicting the target frame. This section describes the process
of fusing these features to create a unified representation
that integrates temporal context effectively.

Initially, each feature Vi in the set {Vi}Si=1 has a tem-
poral dimension of size T

2 , reflecting the temporal extent
of the input video sequence. To condense this temporal
information, we employ a temporal merging layer. This
layer utilizes convolution operations to reduce the tempo-
ral dimension of each feature to 1, effectively aggregating
information across the time axis.

Following temporal merging, a channel mapping layer
is applied. This layer, also implemented using convolution,
serves to standardize the feature channels across all scales to
a common dimension. The result of this process is a set of S
multi-scale features, denoted as {Fi}Si=1, where each feature
Fi has C feature dimensions. For example, F1 ∈ RH

4 ×W
4 ×C
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represents the feature at the first scale, maintaining the
spatial dimensions of H

4 × W
4 with C channels.

These fused features effectively integrate temporal con-
text from the input video sequence, providing a robust foun-
dation for the subsequent tasks of chimpanzee detection and
behavior recognition in the target frame. By preserving in-
formation across multiple scales while condensing temporal
information, this fusion process enables our model to cap-
ture both fine-grained details and broader contextual cues
necessary for accurate analysis of chimpanzee behavior.

4.3 Detection, categorization, and behavioral classifi-
cation

Building upon advanced DETR-series models [25], [26],
[27], particularly DINO [27], we develop a comprehensive
model for chimpanzee detection and behavior classification.
Our approach simultaneously determines the category,
location, and behaviors of chimpanzees in the target frame,
leveraging a combination of position and content queries to
enhance accuracy.

Overview. The process begins with cross-scale feature
fusion using the Transformer encoder’s self-attention mech-
anism. This integrates information from the multi-level fea-
tures {Fi}Si=1, capturing both fine-grained details and high-
level spatial context. We flatten and concatenate features
of different scales to form initial content queries for the
encoder, with corresponding positional encodings serving
as position queries.

A query selection mechanism then identifies Q encoder
features as initial position queries for the decoder. The
decoder, augmented with auxiliary heads, transforms these
position queries into bounding boxes while optimizing con-
tent queries for class and behavior determination. This dual-
query approach enables precise detection and simultaneous
classification of chimpanzees and their behaviors, including
fine-grained multi-label prediction for complex actions.

For training, we adopt loss functions common to the
DETR series [25], [27] for box regression and classification,
employing one-to-one bipartite matching. To address multi-
label behavior classification, we implement focal loss [64],
which effectively handles class imbalance in such scenarios.

Query selection. To optimize position queries efficiently,
we adopt a query selection scheme inspired by [26], [27].
This process involves appending a classification head net-
work after the encoder to compute confidence scores for
each query, representing the likelihood of containing a chim-
panzee. The top Q queries with the highest confidence are
selected as initial position queries for the decoder.

This selection mechanism serves to focus the model’s
attention on the most relevant spatial locations, potentially
improving both detection accuracy and computational
efficiency. By prioritizing high-confidence regions, the
decoder can more effectively refine its predictions. The
architecture of the classification head network used here is
shared with other head networks in our model, details of
which are elaborated in the subsequent section.

Prediction heads. Our model employs two specialized
prediction heads: one for bounding box regression (de-
tection) and another for behavior classification. Both are
implemented as Multilayer Perceptrons (MLPs) and utilize
refined query features from the last decoder layer’s output.

The box regression head transforms position queries into
B = {bq}Qq=1 ∈ RQ×4, where each bq ∈ [0, 1]4 represents
the predicted box position for the qth query. Box positions
are defined using center coordinates, height, and width, all
relative to the image size.

The behavior head network converts content queries into
two outputs: C = {cq}Qq=1 ∈ RQ×1, representing class prob-
abilities, and A = {aq}Qq=1 ∈ RQ×K , representing behavior
probabilities, where K = 23 is the total number of behavior
classes. Here, cq ∈ [0, 1] provides the confidence score for
the qth query, indicating the probability of a chimpanzee in
the bounding box. aq ∈ [0, 1]K is a multi-label probability
vector obtained using the Sigmoid function, where each
dimension represents the probability of a corresponding
behavior class.

For query selection, we integrate an additional behavior
head following the encoder. This head generates class
probabilities used as confidence scores for selecting queries,
as discussed in the previous section.

Training losses. Our training process follows established
practices in object detection [25], [27]. We begin with bi-
partite matching based on bounding box positions and class
labels to establish a one-to-one correspondence between pre-
dicted and ground-truth (GT) sets. This matching ensures
that each prediction is uniquely associated with a GT object,
facilitating more effective learning.

Following the matching, we apply set prediction losses
for both box regression and classification. For box regres-
sion, we employ a combination of L1 loss and Generalized
Intersection over Union (GIOU) loss [69]. The L1 loss ad-
dresses direct positional errors, while GIOU loss captures
the overall geometric similarity between predicted and GT
boxes. For classification, including both object class and
behavior classes, we utilize focal loss [64]. This choice is
particularly effective for handling class imbalance, which is
common in multi-label classification scenarios like behavior
recognition.

This comprehensive loss formulation ensures that our
model learns to accurately localize chimpanzees while si-
multaneously classifying their behaviors, addressing the
multi-faceted nature of our task.

5 BENCHMARKING CHIMPACT

To rigorously assess ChimpACT, we benchmark a suite of
representative methods across the aforementioned three
tracks: (i) detection, tracking, and ReID, (ii) pose estimation,
and (iii) spatiotemporal action detection. Our computational
framework leverages four NVIDIA GeForce RTX 3090 GPUs
(24GB) for both training and evaluation across all tracks. In
the subsequent sections, we delve into the implementation
details, baseline methods, and evaluation metrics for each
track. Through this benchmarking, we aim to establish
baseline performance levels, identify key challenges, and
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TABLE 3: Results of the detection, tracking, and ReID track on the ChimpACT test set. The row highlighted in light blue is
the performance reference on the human tracking dataset MOT-17 [34]. − denotes unreported. Results for the input video at two
different resolutions are reported.

Method HOTA ↑ MOTA ↑ MOTP ↑ IDF1 ↑ mAP ↑ nFP ↓ nFN ↓ nIDs ↓
OC-SORT [65] 63.2 78.0 − 77.5 − 2.7 19.0 0.3

Resolution: 1440 × 800
SORT [43] 39.8 43.2 20.3 37.7 71.4 16.1 37.8 2.8

DeepSORT [66] 40.2 43.2 20.3 38.4 71.4 16.1 37.8 2.9

Tracktor [67] 49.5 50.5 22.6 55.6 70.7 13.8 35.2 0.5

QDTrack [44] 50.3 54.2 22.2 55.8 77.8 19.7 24.6 1.4

ByteTrack [68] 49.2 43.9 20.3 55.2 70.3 18.0 37.4 0.7

OC-SORT [65] 47.9 42.1 20.5 53.3 70.5 20.3 36.6 1.1

Resolution: 576 × 576
SORT [43] 27.2 34.4 23.1 24.0 63.7 12.4 48.8 4.1

DeepSORT [66] 30.8 31.8 23.0 32.4 63.7 12.1 48.6 7.1

QDTrack [44] 47.9 46.5 24.1 52.6 73.9 24.8 27.2 1.4

ByteTrack [68] 38.0 35.4 25.7 45.2 58.5 9.3 49.4 0.7

OC-SORT [65] 41.5 39.1 25.1 47.2 64.4 14.2 45.3 1.2

AlphaChimp (Ours) 56.3 60.0 21.6 65.6 75.2 14.2 25.1 0.5

provide insights that will guide future research efforts in
automating chimpanzee behavior using ChimpACT.

5.1 Detection, tracking, and ReID

Setting. We evaluate several prominent MOT algorithms
on ChimpACT, including both classical methods such as
SORT [43], DeepSORT [66], and Tracktor [67], as well as
the SOTA methods such as ByteTrack [68], and OC-SORT
[65]. All implementations are based on the MMTracking
[70] codebase. The detection backbone is YOLOX [71]. Each
method undergoes training for 10 epochs, adhering to the
official configurations, which encompass optimizer settings,
batch size, data augmentation techniques, and pre-trained
models. Given that the three classical methods [43], [66], [67]
lack inherent ReID modules, we supplement with a dedi-
cated ReID network built on ResNet-50 [47]. The training
curves of these methods provided in the Fig. A4a affirm
convergence within the training epochs.

We split the video clips in ChimpACT into 80% train,
10% validation, and 10% test. Both the train set and test set
cover all the individuals. Models are trained on the training
set, with performance metrics reported on the test set. We
employ widely-accepted evaluation metrics, drawing from
convention in human/object detection, tracking, and ReID
[43], [44], [68]. Specifically, we utilize (i) mean Average
Precision (mAP) [35] to gauge the detection accuracy, and
(ii) the CLEAR metrics [72] (Multiple Object Tracking
Accuracy (MOTA), Multiple Object Tracking Precision
(MOTP), False Positives (FP), False Negatives (FN), Identity
Switch (ID)s), Identity F1 Score (IDF1) [73], and Higher
Order Tracking Accuracy (HOTA) [74] to evaluate various
facets of the tracking performance. It is worth noting that
for FP, FN, and IDs, we report normalized values and
denote these metrics as nFP, nFN, and nIDs, respectively.

Results. Tab. 3 presents the performance of various pose
estimation methods on the ChimpACT test set. Each method
was evaluated over three independent runs, with the re-
ported values representing the average results. For a com-
prehensive analysis of result stability, including variance
measures, we refer readers to our conference paper [22].
A holistic view of the results reveals that QDTrack [44]
emerges as the top performer. However, it does suffer
from a higher count of identity switches compared to other
methods. In terms of detection performance, the YOLOX
algorithm [71] stands toe-to-toe with Faster R-CNN [81]. A
discernible trend is evident among contemporary tracking
methods, which seem to excel in identity association capa-
bilities over their classical counterparts. This is corroborated
by marked improvements in tracking metrics like IDF1 and
IDs. Such a trend intimates that the latest tracking methods
might be adept at maintaining consistent object identities,
a pivotal aspect when tracking and analyzing individual
trajectories within chimpanzee cohorts.

While the results garnered by the array of tracking al-
gorithms are commendable, they still lag behind the bench-
marks set on human-centric datasets [44], [65], [68]. This dis-
parity can be attributed to challenges like the low contrast
and low color variation of the body fur of chimpanzees,
compounded by intricate self-occlusions. Nonetheless, this
very observation accentuates the significance of ChimpACT.
It not only offers a challenging arena for tracking algorithms
but also stands as an ideal platform for pioneering and
refining tracking methods tailored for chimpanzees and
other non-human primates.

5.2 Pose estimation
Setting. We benchmark several SOTA human pose es-
timation methods on ChimpACT, such as High-Resolution
Network (HRNet) [23] and DarkPose [79]. These meth-
ods represent both heatmap-based and regression-based
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TABLE 4: Results of the pose estimation track on ChimpACT test set. The row highlighted in light blue is the performance
reference on the human pose estimation dataset COCO [35]. − denotes unreported.

Method Backbone PCK@0.05 PCK@0.1 AP AP50 AP75 APM APL AR

HRNet [23] HRNet-W32 − − 74.4 90.5 81.9 70.8 81.0 79.8

SimpleBaseline
[24]

ResNet-50 25.3 46.2 8.6 27.4 3.9 0.3 12.5 17.3
ResNet-101 26.2 46.4 8.7 27.5 4.2 0.3 12.9 17.7
ResNet-152 26.3 47.3 9.3 29.2 4.7 0.5 13.4 18.6

RLE [75]

MobileNetV2 27.5 48.1 16.7 43.1 11.1 2.0 17.7 19.5
ResNet-50 28.2 47.1 16.3 41.2 11.4 1.3 17.4 20.0
ResNet-101 28.2 46.5 16.2 41.1 10.8 2.1 17.3 20.1R

eg
re

ss
io

n

ResNet-152 30.0 48.4 18.1 43.0 13.5 1.4 19.2 22.3

CPM [76] CPM 40.7 60.4 21.6 51.0 17.1 9.5 22.4 25.4

Hourglass [77] Hourglass-4 44.6 60.8 20.6 48.9 16.0 4.6 23.7 28.2

MobileNetV2 [78] MobileNetV2 39.8 59.4 19.4 48.5 14.3 2.3 20.6 23.2

SimpleBaseline
[24]

ResNet-50 43.3 61.7 22.1 51.5 17.7 3.7 23.4 26.3
ResNet-101 42.8 60.7 21.7 52.5 16.7 4.3 23.0 26.2
ResNet-152 43.9 61.6 22.7 53.4 18.3 5.3 23.9 27.1

HRNet [23] HRNet-W32 48.6 65.6 25.9 58.2 22.1 6.1 27.0 30.3
HRNet-W48 47.3 64.5 25.1 57.2 21.0 6.9 26.2 29.6

DarkPose [79]

ResNet-50 43.7 62.1 22.8 53.8 18.8 3.4 24.1 27.1
ResNet-101 43.1 61.2 22.1 52.6 17.6 4.0 23.4 26.5
ResNet-152 43.5 61.2 22.4 53.2 17.4 4.6 23.7 26.7
HRNet-W32 48.7 65.6 25.7 58.4 21.3 5.6 26.9 30.1
HRNet-W48 47.6 64.5 25.8 58.0 21.5 6.6 27.0 30.2

HRFormer [80] HRFormer-S 45.1 61.4 23.0 53.1 19.7 5.5 24.1 27.1

H
ea

tm
ap

-b
as

ed

HRFormer-B 46.4 63.0 24.1 55.3 20.1 5.2 25.4 28.2

paradigms, providing a comprehensive evaluation across
different pose estimation approaches. We implement these
methods using the MMPose [82] framework to ensure con-
sistency in our experimental setup. All models undergo
training for 210 epochs, adhering to their respective offi-
cial configurations for optimizers, batch sizes, and learning
rates. This extended training period allows for thorough
model convergence. To assess model performance and ver-
ify the absence of overfitting, we present validation curves
on the AP metric in Fig. A4b. Detailed implementation
specifics are available in Sec. A3.

For evaluation, we maintain the same train/test
partition as in the tracking task. We employ mAP with
various thresholds, following conventions in human pose
estimation [35]. Additionally, we incorporate the Percentage
of Correctly estimated Keypoints (PCK) metric [15], [36],
which quantifies the fraction of accurately predicted
keypoints within a distance threshold. Specifically, PCK@δ
uses a threshold defined as δ × max(height, width) of the
chimpanzee’s bounding box. This metric provides insights
into body joint localization accuracy, allowing us to assess
the models’ performance on chimpanzee anatomy.

Results. Tab. 4 consolidates these pose estimators’ perfor-
mances on the ChimpACT test set. Notably, the heatmap-
based DarkPose [79] with an HRNet [23] backbone emerges
as the top-performing model. This trend aligns with obser-
vations in human pose estimation, where heatmap-centric
methods [23], [24], [76], [77] predominantly lead the pack,
attributed to their robustness against pose and appearance
variations. However, the heatmap representation may be
less accurate in scenarios where multiple joints are occluded

or closely spaced, and it demands heftier computational and
memory resources. Conversely, the newer regression-based
methods [75] are computationally leaner but tend to be more
susceptible to overfitting and generally lag in performance.

These results underscore that the task of chimpanzee
pose estimation is distinct and nuanced, and cannot be
seamlessly addressed by merely repurposing human-centric
pose estimation methods. We believe there are two primary
reasons for this: (i) chimpanzees exhibit unique joint flexibil-
ity and a broader range of motion, and (ii) the visual texture
and appearance of chimpanzee fur diverge significantly
from human skin. These insights emphasize the need for
chimpanzee specific pose estimation strategies.

5.3 Spatiotemporal action detection

Setting. We benchmark several representative human ac-
tion detection baselines on ChimpACT using the MMAction2
[89] codebase. The evaluated methods include ARCN [84],
LFB [85], and SlowFast with its variant SlowOnly [45]. These
methods represent a range of approaches in spatiotempo-
ral action detection, from recurrent networks to long-term
feature banks and multi-pathway architectures. All models
undergo training for 20 epochs with a batch size of 32,
maintaining consistent optimizers and learning rates as in
their official implementations. To verify convergence and
assess training stability, we provide convergence curves
in Fig. A4c. In addition to these baselines, we report re-
sults from recent SOTA methods [83], [86], [87], [88], some
of which utilize foundation models. For instance, Video-
Prism [83] is a video understanding foundation model.
The reported numbers for these methods are sourced from
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TABLE 5: Results of spatiotemporal action detection track on ChimpACT test set. The row highlighted in light blue is the
performance reference on the human action dataset AVA [39]. “with GT box” and “with Det. box” mean using GT bounding boxes
or detected boxes, respectively. “w. NL/Max/Avg LFB” denotes using non-local, max, or average LFB module. “w. Ctx” indicates
using both the RoI feature and the global pooled feature for classification. “mAP,” “mAPL,” “mAPO ,” and “mAPS represent the
overall mAP and mAP for Locomotion, Object interaction, and Social interaction. ⊘ denotes not applicable. − denotes unreported.

Method Module mAP mAPL mAPO mAPS

SlowFast [45] 25.8 ⊘ ⊘ ⊘
VideoPrism-B [83] 30.6 ⊘ ⊘ ⊘
VideoPrism-g [83] 36.2 ⊘ ⊘ ⊘

with GT box
ACRN [84] 24.4 58.7 33.8 14.7

w. NL LFB 22.0 50.1 32.3 13.5
w. Max LFB 23.2 45.0 31.2 17.7LFB [85]
w. Avg LFB 21.3 45.0 29.8 14.7

20.9 48.1 36.2 11.5SlowOnly [45] w. Ctx 22.3 52.3 31.2 13.8

21.9 53.0 30.6 12.9SlowFast [45] w. Ctx 24.3 56.8 31.5 15.6

CoCa-B [86] 12.6 − − −

InternVideo-B [87] 24.0 − − −
InternVideo-L [87] 25.7 − − −

UMT-B [88] 25.0 − − −
UMT-L [88] 24.7 − − −

VideoPrism-B [83] 28.8 − − −
VideoPrism-g [83] 31.5 − − −

with Det. box
ACRN [84] 13.4 26.8 14.4 7.1

11.8 25.8 13.1 5.2SlowOnly [45] w. Ctx 13.9 27.4 14.4 7.7

13.5 27.2 13.7 7.3SlowFast [45] w. Ctx 16.2 27.5 14.3 11.9

AlphaChimp 34.3 50.3 31.3 29.3

VideoPrism [83], which adheres to the same training and
evaluation protocols as our benchmark.

To ensure fair comparison, we provide GT bounding
boxes for each chimpanzee during both training and testing,
following the protocol established in [90]. This approach
allows us to focus on the action detection performance
without the confounding factor of object detection accuracy.
For researchers interested in exploring ablative modules
or implementation details, we direct them to Sec. A3. We
maintain consistency with previous tracks by adopting the
same train-test split. Performance evaluation is conducted
using mAP across all 23 action classes, adhering to standard
practices in the field [45], [90]. To provide a more nuanced
understanding of model performance, we also evaluate the
mAP within each of the four behavioral types separately.
This granular analysis allows us to identify strengths or
weaknesses of different methods across various categories
of chimpanzee behavior.

Results. Tab. 5 (middle block “with GT box”) summa-
rizes the action detection algorithms’ performances on the
ChimpACT test set. The overall mAP aligns with results
on human action datasets, demonstrating the feasibility of
automated action detection for video coding and further
analyses of chimpanzee behavior. Notably, locomotion be-

haviors achieve a higher mAP, likely due to their solitary
nature and distinct patterns, while object manipulation tasks
show lower performance. For detailed mAP of the “others”
category, which registers the lowest performance (almost
0% accuracy) due to limited data, we refer readers to our
previous work [22]. This category comprises just 0.14%
of action instances across two fine-grained classes. This
imbalance suggests potential benefits from applying few-
shot learning methods in future research.

The latest method, VideoPrism [83], which utilizes large
models, shows significant improvement over previous ap-
proaches. This advancement underscores ChimpACT’s ef-
fectiveness in evaluating and driving model performance,
while also highlighting its complexity and diversity that
challenge current technologies, positioning it as a valu-
able platform for advancing spatiotemporal action detection
algorithms. The dataset’s challenges in capturing diverse
chimpanzee behaviors provide opportunities for develop-
ing more robust and adaptable models. We anticipate that
ChimpACT will further promote studies into the social dy-
namics of non-human primates in semi-naturalistic environ-
ments, bridging the gap between computer vision advance-
ments and primate behavior research.



13

6 ALPHACHIMP IS THE NEW SOTA
6.1 Implementation details
Our AlphaChimp framework processes video sequences of
T = 8 frames. To ensure fair comparison across different
tasks, we train two model variants with distinct input reso-
lutions. For tracking, we use a resolution of 576×576, while
for spatiotemporal action detection, we employ a 256× 256
resolution. These resolutions align with existing methods in
their respective tracks, facilitating fair comparisons. We em-
ploy Swin-L [63] as the video backbone, comprising S = 4
Swin Transformer blocks. The Transformer architecture con-
sists of 12 encoder and 12 decoder layers, incorporating 4
reference points [26] in the deformable attention module.
Detailed architectural specifications are available in Sec. A4.
Based on our dataset analysis revealing an average of 3
chimpanzees per image, with a maximum of 9, we set
the decoder’s fixed query number to Q = 10. We use the
ChimpACT training set with a batch size of 64. The model is
optimized using Adam with a learning rate of 1e−4 for 20K
iterations. 8 HGX-A800-SXM GPUs are used in the training.

6.2 Improvements over prior methods
Detection, tracking, and ReID. As shown in Tab. 3,
AlphaChimp demonstrates significant improvements over
SOTA methods in tracking performance. At equivalent res-
olutions, our approach achieves approximately 10% higher
HOTA scores, indicating superior overall tracking capabil-
ity. The impressive mAP scores highlight AlphaChimp’s
excellent detection performance, while the nID metric un-
derscores its robust tracking stability.

Notably, AlphaChimp remains highly competitive and
often outperforms higher-resolution methods, despite
using lower-resolution input videos. This suggests that
our approach effectively compensates for reduced spatial
information by leveraging temporal cues and multi-task
learning. Such performance indicates AlphaChimp’s
potential for real-world applications where computational
resources or video quality may be limited.

Spatiotemporal action detection. Tab. 5 (“with Det. box”)
compares AlphaChimp’s action detection performance with
existing SOTAs. Due to AlphaChimp’s end-to-end design
for simultaneous bounding box and behavior category pre-
diction, we cannot directly use GT bounding boxes as input.
To ensure fair comparison, we reproduce open-source meth-
ods using detected boxes from our trained AlphaChimp.
The results reveal AlphaChimp’s substantial improvement
over existing algorithms, achieving a 20% increase in over-
all mAP. This advancement is particularly evident in the
challenging “social” category, where AlphaChimp shows
a 20% enhancement. Our method’s success stems from its
innovative architecture, which integrates temporal feature
fusion with the Transformer’s self-attention mechanism.

Moreover, our AlphaChimp outperforms even the latest
methods like VideoPrism [83], which utilizes foundation
models and extensive pretraining along with GT boxes as in-
put. This remarkable performance underscores our tailored
design for socially interactive animals like chimpanzees. The
ability to accurately detect and classify social behaviors of
our AlphaChimp is crucial for understanding chimpanzee

TABLE 6: Results of different frame lengths T of the video
input on the ChimpACT test set for behavior classification.

T mAP mAPL mAPO mAPS

4 32.3 44.5 31.8 28.0
8 34.3 50.3 31.3 29.3
16 34.0 49.1 36.5 27.8

HOTA
Det. mAP
Act. mAP

80

70

60

50

40

30

20

A
cc

ur
ac

y

2 3 4 200 400 8005       10      50     100
Query  number  Q

Fig. 7: Results of different query number Q on tracking
and spatiotemporal action detection. We plot HOTA, detection
mAP (Det. mAP), and the overall action detection mAP (Act.
mAP). Performance consistently improves up to Q = 10, where
it stabilizes, balancing efficiency and stability.

social dynamics and could have significant implications for
primatology research and conservation efforts.

6.3 Ablation study

Video input frames T . Tab. 6 presents the ablation
results for varying frame length T of the input video. Using
only 4 video frames yields lower performance compared
to 8 frames, as a larger temporal window provides more
temporal information. However, increasing the number
of input frames beyond 8 leads to a slight decline in
performance. This may be due to additional frames
introducing more complex behavioral changes, making
accurate estimation more challenging. The results suggest
that 8 frames strike an optimal balance between temporal
context and performance.

Query number Q. Fig. 7 illustrates the impact of different
query numbers Q in query selection. We plot the mean and
variance for HOTA, detection mAP (Det. mAP), and action
detection mAP (Act. mAP). Based on ChimpACT statistics,
there is an average of 3 chimpanzees per frame, with a
maximum of 9. As expected, we observe rapid improve-
ment in model performance as Q increases up to 10, after
which performance stabilizes. To balance computation and
model stability, we choose Q = 10 for our experiments.
This value results in low variance with stable and superior
performance across all metrics. It effectively accommodates
the typical range of chimpanzees in scenes while providing
headroom for more crowded scenarios.

6.4 Qualitative results

Fig. 8 shows our model’s detection and tracking results.
Each row represents a sequence from a ChimpACT test clip.
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Fig. 8: Visualization of AlphaChimp’s detection and tracking results on ChimpACT test set. Consistent colored boxes denote
successful tracking of the same chimpanzee, while numbers indicate chimpanzee classification confidence scores

Fig. 9: Visualization of reference points in the deformable
attention module. Each query’s reference points are colored
to match its box, with blurring applied according to attention
weights, where brighter points indicate higher significance.

The numbers above each box indicate categorization confi-
dence, while consistently colored boxes denote successful
tracking of individuals. Our model shows robustness in
handling occlusions: in the second row, an infant chim-
panzee (orange box) is slightly obscured by an adult, and in
the third row, a chimpanzee (yellow box) is mostly hidden
by a tree. Despite these challenges, our method maintains
accurate detection and consistent tracking. We further visu-
alize the reference points within the deformable attention
module in Fig. 9, with each point blurred according to its
attention weights for enhanced visualization. Notably, these
reference points predominantly focus on keypoint areas
of each chimpanzee. This suggests that joint regions may
exhibit distinct and unique patterns crucial for chimpanzee
categorization and differentiation from other objects.

In Fig. 10, we present three examples of AlphaChimp’s
tracking and behavior recognition results on the ChimpACT
test set. The method simultaneously predicts detection

boxes around chimpanzees, maintains consistent tracking
(indicated by boxes of the same color across frames), and
recognizes behaviors. The number above each box repre-
sents the categorization probability score. These examples
highlight AlphaChimp’s ability to handle the significant
challenges presented by ChimpACT, including accurate de-
tection of occluded chimpanzees and precise behavior de-
termination. A notable instance is in the first row, where the
method successfully identifies a young chimpanzee heavily
obscured by an adult. We further visualize the gradient
∂a
∂I of our behavior prediction probabilities in Fig. 11. This
visualization highlights that, in predicting behaviors, our
model focuses not only on the individual chimpanzee but
also on other interacting entities within the scene. This
broader attention is crucial for accurately recognizing social
behaviors that involve multiple participants. For instance, in
the first case, where a young chimpanzee is seen ‘playing’
with an adult, our AlphaChimp effectively highlights the
relevant body parts of the adult chimpanzee. This indicates
that our model comprehensively considers the dynamics
between the individuals, allowing for a nuanced under-
standing of social interactions within the group. Please refer
to Sec. A4.3 and our project page for more experimental
results and video demos.

These results highlight AlphaChimp’s effectiveness in
handling complex scenarios with multiple chimpanzees,
occlusions, and varied behaviors. Its consistent tracking
and accurate behavior recognition in challenging conditions
suggest its potential for advancing automated chimpanzee
behavior analysis in real-world settings.

https://sites.google.com/view/alphachimp/home
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Fig. 10: Visualization of AlphaChimp’s tracking and behavior detection results on ChimpACT test set. Consistent colored boxes
denote successful tracking of the same chimpanzee, while numbers indicate chimpanzee classification confidence scores.

Fig. 11: Visualization of the behavior recognition probability
gradient. We visualize ∂a

∂I
, where a represents the behavior

recognition probability for the chimpanzee boxed in image I.

7 CONCLUSION AND FUTURE WORK

This work introduces ChimpACT, the first longitudinal
video dataset capturing detailed behaviors of group-living
chimpanzees, focusing on the juvenile Azibo. It offers an
unprecedented view into our closest evolutionary relatives.
Through extensive experiments, we reveal the challenges
of using human-centric computer vision algorithms for
chimpanzee behavior and introduce AlphaChimp, the first
end-to-end approach that detects, tracks, and recognizes
chimpanzee behaviors in a unified framework. AlphaChimp
enhances tracking and behavior recognition by integrating
temporal context and spatial relationships. Our evalua-
tions show that AlphaChimp outperforms existing methods
across tasks, highlighting its capabilities and ChimpACT’s
potential to advance interdisciplinary research. By bridging
primatology and computer vision, we aim to inspire spe-
cialized techniques for non-human primates, deepening our
understanding of their social dynamics and contributing to

animal welfare and behavioral science.
However, our current work has limitations. ChimpACT

is based on captive chimpanzees in a semi-natural environ-
ment, limiting observable behaviors like natural foraging,
predator responses, and intergroup encounters. Focusing on
Azibo results in some individuals being overrepresented,
restricting the assessment of the full social network. Future
work could explore alternative recording methods, such as
camera traps, or include a broader range of focal subjects
to enhance dataset comprehensiveness. AlphaChimp does
not yet incorporate pose estimation, which may potentially
enhance behavior recognition. It still struggles with precise
behavior detection and tracking, especially under heavy
occlusion or ambiguity, such as distinguishing individuals
in close proximity (see failure cases in Fig. A14). Future
research could focus on pose estimation tailored for chim-
panzees and leveraging prior knowledge to improve detec-
tion and tracking accuracy. Please check Sec. A5 for a more
in-depth discussion.

Additionally, integrating long-term temporal analysis
could capture complex social dynamics and individual
development, offering insights into chimpanzee social
structures and cognitive growth. Addressing these
limitations and exploring these directions could
significantly advance automated chimpanzee behavior
analysis, enhancing our understanding of our closest
evolutionary relatives and contributing to discussions on
the evolution of social behavior and cognition.
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[1] K. E. Langergraber, K. Prüfer, C. Rowney, C. Boesch, C. Crockford,
K. Fawcett, E. Inoue, M. Inoue-Muruyama, J. C. Mitani, M. N.
Muller et al., “Generation times in wild chimpanzees and gorillas
suggest earlier divergence times in great ape and human evolu-
tion,” in PNAS, vol. 109, no. 39. National Acad Sciences, 2012,
pp. 15 716–15 721.

[2] M. S. Dawkins, “Behaviour as a tool in the assessment of animal
welfare,” in Zoology, vol. 106, no. 4. Elsevier, 2003, pp. 383–387.

[3] H. W. Gonyou, “Why the study of animal behavior is associated
with the animal welfare issue,” in booktitle of Animal Science, vol. 72,
no. 8. Oxford University Press, 1994, pp. 2171–2177.

[4] The Chimpanzee Sequencing and Analysis Consortium, “Initial
sequence of the chimpanzee genome and comparison with the
human genome,” in Nature, vol. 437, no. 7055, 2005, pp. 69–87.

[5] C. Hobaiter, L. Samuni, C. Mullins, W. J. Akankwasa, and K. Zu-
berbühler, “Variation in hunting behaviour in neighbouring chim-
panzee communities in the budongo forest, uganda,” in PloS One,
vol. 12, no. 6. Public Library of Science San Francisco, CA USA,
2017, p. e0178065.
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A1 ADDITIONAL DETAILS ON CHIMPACT

A1.1 Ethogram
We detail the ethogram definition in Tab. A1, which system-
atically describes the daily behaviors of chimpanzees. Fig. A2
presents the overall distribution of annotated behaviors, with
social interactions constituting approximately 35% of total an-
notations. Fig. A3 shows the distribution of social behaviors
across individuals, highlighting grooming, playing, and touch-
ing as predominant activities within the group’s social dynam-
ics.

A1.2 Dataset details
Collection and organization. 405 hours of video footage
of the Leipzig A-group chimpanzees were collected between
2015 and 2018. To create a representative sample of the footage,
163 video clips were selected, with 15, 35, 86, and 27 clips
taken from each year. These video clips cover the four seasons.
Each clip is 1000 frames long, with only 3 clips being shorter
than 1000 frames. Visual examples from six clips, featuring
both indoor and outdoor enclosures, are shown in Fig. A1.
The dataset covers a diverse range of physical scenarios,
camera views, and social behaviors, as demonstrated in these
examples. For instance, in the third row of the figure, an adult
chimpanzee is shown grooming an infant chimpanzee in her
arms, while later on, the same infant is nursed.

Annotation process and quality. The annotation process
was conducted using BasicFinder CO., Ltd.’s private labeling
platform, which involved a team of 15 annotators and 2 man-
agers. Prior to commencing the annotation work, our team
developed comprehensive guidelines that explicitly outlined
the requirements for labeling. These guidelines covered several
aspects, including:

(i) Assigning a bounding box for each chimpanzee in the
image. (ii) Specifying the visibility of the bounding boxes. (iii)
Assigning tracking IDs to each bounding box for tracking pur-
poses. (iv) Localizing 2D keypoints within each bounding box.
(v) Indicating the visibility of each 2D keypoint. (vi) Assigning
behavior labels for each bounding box.

To ensure that the annotators followed these guidelines
accurately, the project managers provided training based on the
guidelines. Following the training, the annotators performed a
trial annotation on a small dataset. We actively sought feedback
from the annotators during this phase, which allowed us to
address any issues and make necessary improvements. We
conducted a thorough review of the trial annotations to verify
that the quality met our standards.

During the trial labeling phase, we reached out to three la-
beling companies and ultimately selected BasicFinder CO., Ltd.
based on their exceptional labeling quality. It is worth noting
that BasicFinder CO., Ltd. has previously led the annotation
efforts for the BDD100K [91] dataset, which is a substantial
dataset used for autonomous driving purposes. This experience
demonstrates their ability to maintain high annotation stan-
dards for complex and extensive datasets. Consequently, their
involvement improves the reliability of our ChimpACT dataset
annotations as well.

Once we were confident in the quality of the trial annota-
tions, we proceeded with the large-scale annotation process. To
manage the annotations efficiently, each video clip was desig-
nated as an annotation task, and our managers assigned these
tasks to individual annotators using BasicFinder CO., Ltd.’s
platform, ensuring that there was no overlap in assignments.
BasicFinder CO., Ltd. has implemented rigorous quality man-
agement practices throughout the annotation process. These
practices include a customized workflow, complete job trace-
ability, precise performance tracking, multiple levels of audit-
ing, and scientific personnel management. By adhering to these

practices, we were able to maintain high standards of quality
and accuracy while ensuring efficient processing speed. The
annotation process followed a sequential workflow of execu-
tion, review, and quality control. Experienced annotators were
responsible for executing the annotations, while the manager,
as well as our team, conducted thorough reviews and quality
control checks. Any annotations that did not meet the required
standards were sent back to the annotators for corrections. The
quality control phase involved a comprehensive review and
verification of all data by both the managers and our own team,
ensuring the integrity and accuracy of the annotations. Once all
the data had been confirmed to meet our standards of quality,
we concluded the annotation process.

More specifically, to label chimpanzee identities, annotators
only needed to assign a tracking ID to each chimpanzee, which
was then reviewed by the primatologist in our team, who as-
signed the apes’ names based on his knowledge of the observed
Leipzig A-group chimpanzees. The process of localizing 2D
keypoints within each bounding box and assigning behavior
labels for each chimpanzee presented bigger challenges than
other tasks. To overcome these challenges, we implemented
several measures to ensure accuracy and consistency. For the
labeling of 2D keypoints, we provided detailed instructions
accompanied by visual illustrations, aiming to provide clear
guidelines for annotators to precisely identify and mark the
keypoints. For labeling of behaviors, we supplied example
videos showcasing different chimpanzee behaviors, created by
our team’s experienced primatologists. These videos served as
valuable references, enabling annotators to accurately assign
behavior labels based on observed actions. Throughout the
annotation process, the primatologists actively participated,
offering their expertise and providing valuable feedback to en-
sure the annotations aligned with scientific standards. Finally,
the behavioral primatologists in our team manually reviewed
all labeled frames to ensure data reliability. These measures
and the involvement of the primatologists were instrumental in
enhancing the overall quality and reliability of the annotations.

For more information on the dataset, including pre-
processing scripts, and visualized annotations, please refer to
our project page.

A2 DISCUSSION ON CHIMPACT
Intended uses. The ChimpACT dataset is a versatile resource
that can be used for studying algorithms for chimpanzee
detection, tracking, identification, pose estimation, and
spatiotemporal action detection. Therefore, the dataset is
both relevant for questions in computer vision and primate
behavior. In the context of computer vision, it lends itself
to other research topics, including but not limited to pose
tracking, few-shot learning, weakly-supervised learning, and
transfer learning. Considering primate behavior, the dataset
shares numerous features with other video data commonly
collected with captive and wild chimpanzee populations.
This makes it an ideal resource for fine-grained investigations
of social (e.g., grooming, nursing, aggression) and nonsocial
(e.g., locomotion, object interactions) chimpanzee behaviors.
We strongly encourage researchers to utilize our dataset
solely for research purposes that promote animal welfare and
conservation. We firmly discourage any use of the dataset
for harmful activities such as poaching, hunting or any other
exploitation of primates. It is crucial for researchers to approach
the data with a focus on positive societal impacts and to refrain
from any potential negative consequences.

Ethics. The ChimpACT dataset raises no ethical concerns
regarding the privacy information of human subjects, as it
solely focuses on chimpanzees. Studying the social behavior
of chimpanzees provides an ethical and efficient means to
explore aspects of human sociality due to our phylogenetic

https://shirleymaxx.github.io/ChimpACT/
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TABLE A1: The ethogram used for the ChimpACT dataset.

category definition subcategory subcategory definition

0. moving moving horizontally, e.g., walking, running

1. climbing moving vertically, e.g., climbing up or down a structure

2. resting remaining stationary, e.g., standing, sitting, or lying
locomotion patterns of self-initiated movement of

an individual

3. sleeping resting and keeping eyes closed

4. solitary object playing non-social and non-goal-directed object interaction and exploration

5. eating consuming and processing foodobject interaction
direct physical interactions with
inanimate stationary or movable
objects by hands, feet or mouth

6. manipulating object manipulation of any kind of inanimate object excluding eating

7. grooming a chimpanzee, the groomer, is cleaning the fur, head, hand, feet, or
genitals of another chimpanzee, usually using their hands and/or
mouth

8. being groomed one chimpanzee, the groomee, is getting their skin or fur cleaned by
another chimpanzee

9. aggressing a chimpanzee is showing agonistic behavior towards another chim-
panzee. This can range from charging and chasing another chimpanzee
to direct physical contact such as slapping, hitting, and biting

10. embracing a chimpanzee is embracing another chimpanzee with their arms, not to
be confused with carrying

11. begging a chimpanzee is requesting food or another object from another chim-
panzee, oftentimes by extending their arm, reaching, or using an open
palm begging gesture

12. being begged from a chimpanzee is requested food or another object by another chim-
panzee

13. taking object taking an object from the possession of another chimpanzee, the trans-
fer might be resisted or not

14. losing object the possession is taken by another chimpanzee

15. carrying a chimpanzee (usually an adult) carries another chimpanzee (usually
an infant or juvenile) on the back, front, side, arm, or leg for more than
2 steps

16. being carried a chimpanzee (usually an infant or juvenile) is carried by another
chimpanzee (usually an adult) on the back, front, side, arm, or leg for
more than 2 steps.

17. nursing a female chimpanzee is nursing (breastfed, i.e., making physical contact
with the nipple) an infant/juvenile

18. being nursed an infant/juvenile is being nursed (breastfed, i.e., making physical
contact with the nipple) by a female chimpanzee

19. playing a chimpanzee is physically interacting with another individual in a
friendly, teasing, or mock fighting way (e.g., play fighting and other
behaviors)

social interaction

at least two chimpanzees are
interacting in differentiated roles: with
one individual initiating the social
behavior (initiator) and one individual
receiving the social behavior
(recipient)

20. touching a chimpanzee makes body contact with another chimpanzee (e.g.,
holding hands) and it does not fit with any of the other social interaction
categories described above

21. erection a male chimpanzee has an erect penis

others other behaviors 22. displaying a male chimpanzee, usually with puffed up hair (piloerection) and
an erection, performs a dominance display, which includes walking
with a swagger, swinging their arms to the sides, and making calls
with increasing amplitude, commonly ending by stomping against or
slapping objects. Displays can be directed at another chimpanzee or be
undirected
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Fig. A1: Example frames from the ChimpACT dataset. ChimpACT possesses rich social interactions of the complex everyday life
of group-living chimpanzees and contains several environmental enrichment.
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Fig. A3: Distribution showcasing individuals alongside their
respective social behaviors. Vector graphics; zoom for details.

proximity. By analyzing their behaviors, we can gain insights
into the evolution of human social behavior and potentially
contribute to both the scientific and ethical understanding of
the human condition. The ethics committee of the Wolfgang
Köhler Primate Research Center approved the observational
data collection for this project.

Maintenance, distribution, and license. The ChimpACT
dataset will be maintained by the authors and made publicly
available with a total of 160,500 frames (around 2 hours) on
our project page. The ChimpACT dataset will be distributed
under the CC BY-NC 4.0 license.

Wage paid to annotators. We collaborated with BasicFinder
CO., Ltd. for the annotation process. The labeling was carried

out by 15 annotators, and they were offered a fair wage as per
the prearranged contract. The total expenditure for the labeling
process was approximately 70,000 RMB.

A3 BENCHMARKING CHIMPACT

We trained all the models with officially-used training config-
urations for each of the three tracks. Please refer to the code
implementation on our Github for details. Although we trained
the models for different epochs in experiments conducted on
different tracks, these choices were made based on conven-
tional practices. Based on the training loss curves provided in
Figs. A4a and A4c, it can be observed that all tracking and
spatiotemporal action detection methods have reached conver-
gence within the chosen training epochs. To assess the potential
overfitting of the pose estimation models, we have included the
validation curve on the AP metric in Fig. A4b. The validation
curve demonstrates the performance of the pose models on
the validation set, which indicates that the pose estimation
models are not exhibiting signs of overfitting. Therefore, based
on the training loss curves and the validation curve, it can be
concluded that the chosen training epochs are appropriate for
both tracking and pose estimation methods.

A3.1 Detection, tracking, and ReID

We partitioned the dataset of 163 videos into three sets: 127
videos for training, 17 for validation, and 19 for testing. Of note,
all individual chimpanzees are present in both the training and
testing sets. In the test set, there are 12 and 7 videos for indoor
and outdoor scenes, respectively.

For the evaluation metrics, MOTA (Multiple Object
Tracking Accuracy) takes into account FP (False Positives),
FN (False Negatives), and IDs (IDentity switches). Usually,
FP and FN are larger than IDs; therefore, MOTA mainly
assesses the detection performance. IDF1 evaluates the ability
to preserve subject identities to assess identification association
performance. HOTA (Higher Order Tracking Accuracy) is a
recently proposed metric that considers accurate detection,
association, and localization equally important, and balances
their effects explicitly.

Results. We visualize the tracking results in Fig. A5, with
the ground-truth bounding boxes and chimpanzee identities
shown in the last row. We visualized the confidence scores
of the estimated bounding boxes and their associated IDs in
each frame obtained by the evaluated methods. It is worth
noting that we do not require individual identification of each
chimpanzee, but rather assign the same ID to the same ani-
mal across frames, following the common practice in multi-
human tracking [34]. The estimated box ID is therefore used
solely for evaluating the tracking performance. We observed
that the evaluated methods performed well in scenarios with
minimal occlusion, but struggled to detect and associate the
same individual chimpanzee when heavy occlusion occurred.
For instance, in Fig. A5, the infant chimpanzee’s bounding box
is lost in some frames, and its identity is erroneously switched
later due to heavy occlusion. This is a challenging task in
chimpanzee detection and tracking, as occlusions frequently
occur in group-living habitats. Please refer to the supplemen-
tary video for more experimental results. In conclusion, the
experimental results reveal the limitations of existing methods
for chimpanzee detection and tracking, underscoring the need
for more robust algorithms to be developed. We believe that our
dataset can make a valuable contribution to the advancement of
this field, by providing a challenging benchmark for evaluating
and comparing different methods.

https://shirleymaxx.github.io/ChimpACT/
https://github.com/ShirleyMaxx/ChimpACT


A5

kk k k k k k k

Tracking

Iteration

Lo
ss

(a)

Pose Estimation

Epoch

A
P

(b)

kk k k k k k k

Spatiotemporal Action Detection

Iteration

Lo
ss

(c)
Fig. A4: Training or validation curves on three tracks of example methods. (a) Training loss curve of example tracking methods.
The training iterations correspond to 10 epochs. (b) Validation curve on the AP metric of example pose estimation methods. (c)
Training loss curve of example spatiotemporal action detection methods. The training iterations correspond to 20 epochs.

TABLE A2: Results of the pose estimation track for each keypoint on ChimpACT test set. We report PCK@0.1 metric. We
abbreviate the keypoint names. Please refer to the main paper for the keypoint definition.

Method Backbone 0.hip 1.rknee 2.rankle 3.lknee 4.lankle 5.neck 6.ulip 7.llip 8.reye 9.leye 10.rshoul 11.relbow 12.rwrist 13.lshoul 14.lelbow 15.lwrist

SimpleBaseline [24]
ResNet-50 51.1 45.8 52.3 44.7 48.8 56.4 76.2 77.9 85.7 85.2 54.7 46.1 29.2 60.5 48.5 31.5
ResNet-101 51.3 49.0 53.3 47.3 50.2 58.2 77.1 78.7 86.4 86.4 57.9 46.8 32.5 60.2 51.8 35.4
ResNet-152 50.6 50.5 56.8 47.4 45.3 58.3 76.4 77.4 86.8 86.0 55.8 45.1 35.2 58.2 51.3 35.8

RLE [75]

MobileNetV2 53.1 46.9 53.8 49.0 48.7 61.4 77.1 78.7 86.3 85.1 59.2 41.6 33.5 59.0 48.2 31.9
ResNet-50 47.7 42.6 46.6 42.7 46.2 57.7 75.9 77.4 81.4 79.3 59.0 44.0 30.3 58.9 48.5 30.5
ResNet-101 51.9 49.4 52.8 55.4 49.1 61.0 79.5 80.4 87.2 86.6 60.3 46.4 40.2 62.0 53.6 39.0R

eg
re

ss
io

n

ResNet-152 54.1 50.2 52.8 53.1 49.3 60.6 79.8 80.7 88.0 85.4 63.1 50.7 42.5 61.1 53.5 38.6

CPM [76] CPM 61.1 65.9 71.7 59.7 68.7 67.3 85.5 87.2 91.1 90.5 67.0 60.1 59.6 67.8 66.3 53.4
Hourglass [77] Hourglass-4 62.4 65.3 70.8 65.2 67.8 66.4 84.0 85.9 86.9 87.3 68.5 61.7 60.4 67.7 66.0 56.0
MobileNetV2 [78] MobileNetV2 58.8 64.8 71.2 61.3 64.8 67.0 83.8 85.4 91.0 89.1 69.3 58.6 56.9 67.4 64.8 52.1

SimpleBaseline [24]
ResNet-50 63.2 67.9 70.7 64.4 67.5 66.8 85.1 86.3 92.8 90.5 70.6 59.1 57.7 67.6 65.0 54.4
ResNet-101 62.0 64.6 69.6 61.4 68.4 67.4 85.1 87.4 91.9 89.6 70.1 61.2 56.3 66.7 63.5 54.1
ResNet-152 64.5 64.6 69.2 62.5 69.9 67.3 86.5 88.5 91.1 89.7 72.4 62.4 58.5 69.9 66.0 55.3

HRNet [23] HRNet-W32 65.8 69.5 74.5 66.1 69.2 70.5 88.2 90.4 92.6 92.1 76.1 67.7 64.4 72.4 69.5 62.8
HRNet-W48 61.5 69.1 74.6 65.1 70.4 70.7 87.5 88.9 93.8 92.2 75.3 64.7 61.1 72.1 70.6 58.9

DarkPose [79]

ResNet-50 62.6 64.4 68.6 63.2 66.6 69.9 86.3 87.7 91.7 90.5 73.8 61.5 59.1 69.6 66.9 58.0
ResNet-101 61.7 62.9 70.5 62.6 65.7 67.0 86.3 87.7 92.0 89.7 70.1 59.7 55.4 68.6 62.8 54.4
ResNet-152 63.3 68.6 69.1 62.5 66.0 67.7 86.5 88.0 92.6 89.5 71.8 61.9 56.1 69.5 63.3 53.4
HRNet-W32 63.5 67.3 74.0 67.2 71.6 70.0 88.3 89.5 93.4 92.1 75.6 65.3 64.3 73.1 69.2 62.6
HRNet-W48 65.9 69.7 73.5 67.1 72.8 72.0 89.6 91.3 94.5 91.8 73.3 62.6 61.2 71.6 70.8 62.8

HRFormer [80] HRFormer-S 63.0 66.5 70.7 64.2 68.5 67.5 84.5 85.6 91.0 89.1 71.3 61.0 59.1 68.3 64.9 56.0

H
ea

tm
ap
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ed

HRFormer-B 61.4 67.2 71.9 66.3 70.9 67.7 84.9 86.2 93.6 90.6 71.9 66.3 62.3 70.8 67.2 58.0

A3.2 Pose estimation

We followed the partition of the dataset as the first track to
train and evaluate the methods.

Results. We report the PCK@0.1 for the 16 keypoints in
Tab. A2. The results reveal that the keypoints on the face, such
as the eyes and lips, exhibited better estimation compared to
the arms and legs. This could be attributed to the fact that
eyes and lips have more distinctive visual patterns than limbs,
which are often surrounded by heavy fur. Tab. A3 further
reports the PCK@0.1 for each action category on the test set.
We observe that different action types exhibit variations in
pose accuracy, for example, with climbing generally achieving
slightly higher accuracy compared to resting in most methods.
This observation can be attributed to the higher potential for
self-occlusion during resting, as chimpanzees tend to exhibit
significant self-occlusion due to their flexible joints. This is
evident in the visualized examples in Fig. A6, where (a) and
(c) depict resting poses with pronounced self-occlusion. In
contrast, during climbing, the body is mostly in an extended
state, as shown in (b) and (d). Consequently, the PCK tends to
be slightly higher for climbing compared to resting as shown
in Tab. A4. To validate this assumption, we further evaluate
the performance of all the methods for non-occluded poses in
Tab. A5. It is interesting to note that all the methods achieve

high PCK accuracy when all the keypoints are visible. This
demonstrates their effectiveness in accurately estimating poses
when occlusions are minimal or absent.

These observations highlight the unique and intricate na-
ture of chimpanzee pose estimation, which is complicated by
their flexible joint articulations and extended range of motion,
as well as the dissimilar physical appearances of their fur
in comparison to that of humans. Consequently, developing
accurate pose estimation algorithms for chimpanzees requires
careful consideration and specialized techniques that account
for their unique characteristics.

Fig. A7 presents the qualitative results of several models
on the ChimpACT test split, with the ground-truth poses dis-
played in the last row. It is promising to observe that directly
transferring human pose estimation algorithms to chimpanzees
yielded decent performance. However, due to self-occlusions
and different physical appearance and joint articulations, these
models are susceptible to errors in estimating the positions of
limbs, as seen in the misaligned right arm and leg of the young
chimpanzee in the first column of Fig. A7.

A3.3 Spatiotemporal action detection
We adopted the same dataset partition as the first track. For
the four representative methods, we ablated different modules.
For LFB [85], we ablated different ways of the feature bank
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Fig. A5: Qualitative results of representative methods on the ChimpACT test set on the tracking task. For each method, we
visualize the estimated confidence score (“conf”) and the associated IDs (“boxID”) of each bounding box in each frame. The
ground-truth bounding boxes and chimpanzee names are shown in the last row, and we add a number left to the name to make
it easier to track. Please zoom in for details.



A7

TABLE A3: Results of the pose estimation track for each action category on ChimpACT test set. We report PCK@0.1 metric. The
action category number is consistent with Tab. A1.

Method Backbone 0 1 2 3 4 5 6 7 8 9 10 11 12 15 16 17 18 19 20 21 22

SimpleBaseline [24]
ResNet-50 39.8 47.7 48.0 56.1 44.4 64.2 56.7 35.7 26.1 81.3 67.0 51.3 45.0 26.5 34.5 3.7 5.5 29.9 26.9 87.5 56.6
ResNet-101 39.3 49.0 48.1 59.5 46.3 60.9 57.5 38.9 20.7 75.0 69.5 57.5 45.0 32.1 35.5 2.9 6.6 28.8 26.6 62.5 52.5
ResNet-152 40.8 45.6 49.9 56.2 46.5 63.9 54.8 37.7 23.6 68.8 67.4 62.5 51.3 30.6 34.3 6.6 5.3 29.5 26.1 75.0 56.6

RLE [75]

MobileNetV2 40.8 48.0 50.0 52.9 47.1 63.5 57.7 38.4 18.1 62.5 67.6 53.8 48.8 28.8 36.5 5.7 8.5 29.4 29.8 62.5 62.5
ResNet-50 42.0 52.1 51.5 57.6 50.0 65.2 57.8 41.0 20.2 75.0 69.0 50.0 55.0 31.9 35.4 4.6 3.2 29.0 31.5 81.3 61.3
ResNet-101 43.3 46.4 51.8 58.3 46.6 68.0 55.8 34.1 18.7 75.0 68.5 48.8 43.8 31.9 35.2 6.0 5.6 29.7 31.6 75.0 62.6R
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ResNet-152 41.4 52.9 50.7 57.2 49.3 64.2 56.3 34.1 17.7 75.0 72.5 48.8 46.3 35.6 31.8 5.4 6.1 30.2 30.1 75.0 59.8

CPM [76] CPM 49.4 59.4 59.0 60.9 53.9 73.1 65.2 46.6 28.4 81.3 66.6 52.5 60.0 41.6 34.8 10.6 3.8 36.1 41.8 68.8 66.2
Hourglass [77] Hourglass-4 48.1 66.5 55.3 63.2 58.5 71.9 67.4 50.3 27.8 81.3 72.8 47.5 65.0 44.0 38.2 14.1 1.8 40.6 35.3 81.3 63.6
MobileNetV2 [78] MobileNetV2 49.8 58.4 56.1 59.3 54.8 71.2 65.1 52.8 25.8 75.0 72.8 60.0 48.8 39.8 35.8 11.7 1.5 35.0 36.2 81.3 61.4

SimpleBaseline [24]
ResNet-50 52.3 60.0 57.2 60.9 56.3 73.9 66.0 53.3 25.2 81.3 72.0 62.5 65.0 45.0 35.4 8.4 2.4 39.1 37.6 75.0 65.7
ResNet-101 52.0 60.9 57.5 60.8 56.6 71.9 66.4 52.6 28.2 93.8 72.2 71.3 61.3 42.0 34.2 6.4 1.9 39.6 36.9 68.8 67.0
ResNet-152 51.4 60.0 57.8 60.0 57.4 71.6 66.3 55.4 27.8 81.3 79.1 58.8 52.5 45.1 32.3 5.3 0.5 38.1 38.0 87.5 67.6

HRNet [23] HRNet-W32 56.7 66.1 60.8 60.9 60.2 76.3 69.3 54.8 27.2 87.5 74.8 61.3 63.8 50.6 38.7 9.1 2.4 40.2 41.4 81.3 65.6
HRNet-W48 56.9 65.9 59.3 60.9 60.3 75.7 70.3 53.2 30.2 87.5 74.2 66.3 67.5 52.9 37.6 13.9 2.9 41.3 39.7 87.5 65.9

DarkPose [79]

ResNet-50 52.1 60.9 57.5 62.1 57.4 72.6 66.1 56.0 26.8 75.0 72.9 56.3 61.3 42.1 31.7 9.6 0.4 35.3 39.0 75.0 66.4
ResNet-101 52.6 62.6 57.6 61.4 56.1 71.8 67.7 51.7 26.3 81.3 73.4 65.0 62.5 44.0 38.2 6.3 2.6 36.7 35.7 87.5 61.1
ResNet-152 52.6 63.3 57.8 59.4 57.9 73.2 67.9 53.0 25.7 81.3 76.3 57.5 65.0 45.0 35.0 8.7 1.7 35.9 37.1 87.5 68.3
HRNet-W32 56.9 68.9 62.6 62.5 61.5 74.0 69.7 56.5 26.0 81.3 81.2 58.8 72.5 52.2 42.3 9.8 2.1 41.6 44.5 81.3 67.3
HRNet-W48 57.6 67.7 60.3 59.2 60.3 73.7 69.6 56.3 28.5 93.8 77.2 53.8 67.5 52.8 36.7 4.2 1.4 39.7 40.4 75.0 63.9

HRFormer [80] HRFormer-S 52.9 62.3 55.7 59.6 56.8 72.3 68.2 54.2 23.7 93.8 75.1 68.8 52.5 45.1 33.5 2.5 1.1 40.6 34.5 62.5 66.9
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HRFormer-B 54.2 63.4 58.0 61.3 58.8 72.4 68.2 52.4 25.4 81.3 77.5 55.0 67.5 46.8 37.5 12.6 0.7 40.8 37.7 75.0 63.7

TABLE A4: Results of the pose estimation by HRNet-W32 model. We report
PCK@0.05 and PCK@0.1 metrics.

No. Action PCK@0.05 PCK@0.1

(a) resting 43.8 62.5
(b) climbing 81.2 93.8
(c) resting 68.8 93.8
(d) climbing 75.0 100.0

(c) (d)

(a) (b)

Fig. A6: Visualization of predicted pose by HRNet-
W32 [23].

operator instantiations, by using non-local (NL) blocks [92] or
average (Avg) or max (Max) pooling. For SlowFast [45] and the
variant SlowOnly, we ablated the context module (Ctx), which
indicates that using both the RoI feature and the global pooled
feature for the action classification.

Results. We report the mAP for each model’s best con-
figuration on several subcategory behaviors in Tab. A6. The
models exhibit better performance in detecting locomotion and
solitary object interactions, possibly because these actions are
relatively simple and involve less interaction between individ-
uals, making it easier for the model to distinguish between
action patterns. However, there is still considerable room for
improvement in existing models for action categories with
higher levels of interaction, such as social interactions.

We provide qualitative results in Figs. A8 and A9. All
methods recognized the playing action of the two chimpanzees
in Fig. A8, but incorrectly classified the touching actions as
grooming in Fig. A9. These two action patterns exhibit subtle
differences that significantly challenge the models to distin-
guish them accurately. We recommend referring to the supple-

mentary video for the video results to observe the difference.
The challenges of such distinctions highlight the need for
stronger algorithms to address these issues effectively.

Overall, we hope that our work will inspire further research
and development in the area of chimpanzee behavior recogni-
tion, with the ultimate goal of improving our understanding of
chimpanzee and primate behaviors and ecology.

A4 ADDITIONAL DETAILS ON ALPHACHIMP

A4.1 Architecture details
Fig. A10 illustrates the detailed architectural configuration of
the video backbone. In line with [63], the 3D patch parti-
tion layer obtains T

2
× H

4
× W

4
3D tokens, with each patch

(i.e. token) consisting of a Cin-dimensional feature. Subse-
quently, four successive stages transform these video tokens
into multi-resolution features: specifically, V1 ∈ R

T
2
×H

4
×W

4
×M ,

V2 ∈ R
T
2
×H

8
×W

8
×2M , V3 ∈ R

T
2
× H

16
×W

16
×4M , and V4 ∈

R
T
2
× H

32
×W

32
×8M .
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Fig. A7: Qualitative results of representative methods on the ChimpACT test set on the pose estimation task. The ground-truth
poses are shown in the last row.

The feature fusion module then transforms these multi-scale
temporal features into F1 ∈ R

H
4
×W

4
×C , ..., F4 ∈ R

H
32

×W
32

×C .
This module operates in two key steps: first, temporal merging
compresses the features along the temporal dimension using
3D convolutional layers. Next, a channel mapping layer adjusts
the feature channels to ensure uniformity, standardizing them
to C using 2D convolutional layers.

Before inputting the multi-scale features F into the Trans-
former encoder-decoder, we flatten and concatenate them along
the spatial dimension. This process results in a feature input of
size (H

4
× W

4
+ H

8
× W

8
+ H

16
× W

16
+ H

32
× W

32
)× C.
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Fig. A8: Qualitative results of representative methods on the ChimpACT test set on the spatiotemporal action detection task.
The ground-truth actions are shown in the last row.

A4.2 Implementation details
In practice, we set Cin = 192, M = 192, and C = 512.
Following the successful pertaining paradigm in foundation
models, we first train our model on the Object365 dataset
[93] for 40K iterations. We then fine-tune the model on our
ChimpACT dataset for 20K iterations. We set the thresholds for
category and behavior classification at 0.3 and 0.3, respectively.

A4.3 Additional results
We report the accuracy of several subcategory behaviors in
Tab. A6. It is evident that when using the same detected
boxes as input, our method AlphaChimp shows significant
improvements over the baselines, especially in social behaviors.
For example, previous methods almost completely failed in
categories like playing or being nursed, whereas we achieved
substantial improvements. Even when compared to baselines
using GT boxes as input, our method AlphaChimp still main-
tains impressive accuracy.

We present additional tracking results by our AlphaChimp
in Fig. A12. These examples further demonstrate the robustness
and effectiveness of our approach, particularly in challenging
scenarios. Even when significant occlusion occurs, such as in
the third row where a chimpanzee is partially hidden from
view, our method successfully detects and tracks the occluded
chimpanzee.

Fig. A11 visualizes more examples of the reference points
within the deformable attention module, with each point

blurred according to its attention weights for clarity. These
reference points mainly target keypoint areas on chimpanzees,
indicating that joint regions may have unique features essential
for distinguishing chimpanzees from other objects.

We present additional qualitative results in Fig. A13, show-
casing predictions made by our AlphaChimp on the test set of
the ChimpACT dataset. These results illustrate the comprehen-
sive capabilities of our model, which not only predicts detection
bounding boxes but also performs simultaneous classification
of both the class and behaviors in an end-to-end manner. This
integrated approach allows AlphaChimp to efficiently process
complex visual scenes, identifying individual chimpanzees and
their corresponding actions. By effectively combining detection
and classification tasks, AlphaChimp provides a holistic view
of the observed scenes, making it a powerful tool for analyzing
and understanding primate behavior in natural settings. Please
refer to our project page for more video results.

Fig. A14 illustrates typical failure cases encountered by
our model. Panels (a-c) demonstrate tracking failures, while
(d-e) highlight behavior recognition issues. Tracking failures
primarily involve detection errors and ID mismatches. In (a),
two closely positioned chimpanzees are mistakenly identified
as one due to their small appearance in the image. Panel (b)
shows an inaccurate bounding box for a young chimpanzee,
excluding its left hand—a challenging scenario even for human
observers. In (c), an ID change occurs after occlusion, resulting
in a bounding box color change upon the chimpanzee’s reap-

https://sites.google.com/view/alphachimp/home
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Fig. A9: More qualitative results of representative methods on the ChimpACT test set on the spatiotemporal action detection
task. The ground-truth actions are shown in the last row.
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Fig. A10: Detailed architecture of the video backbone in our AlphaChimp. We follow the Swin-L [63] architecture design.

pearance.

Behavior recognition failures are exemplified in panels (d)
and (e). Panel (d) shows a missed behavior estimation due
to a detection error, while (e) demonstrates incorrect behavior
recognition despite successful detection. For instance, an adult
chimpanzee carrying a young one is not correctly identified,
and the young chimpanzee’s state of ‘being carried’ is unrecog-
nized in subsequent frames.

These failure cases highlight the inherent challenges in

chimpanzee perception and behavior analysis. Factors such as
the intrinsic appearance similarity among chimpanzees, fre-
quent occlusions in their natural environment, and the com-
plexity of social behaviors involving multiple individuals con-
tribute to these difficulties. These examples underscore the need
for continued refinement of our model to better handle such
challenging scenarios in chimpanzee behavior analysis.
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TABLE A5: Results of the pose estimation track for non-
occluded poses on ChimpACT test set. We report the PCK met-
rics. The non-occluded poses denote those with all keypoints
visible.

Method Backbone PCK@0.05PCK@0.1

SimpleBaseline [24]
ResNet-50 47.6 80.6
ResNet-101 47.2 77.9
ResNet-152 54.5 83.0

RLE [75]

MobileNetV2 47.7 82.4
ResNet-50 52.9 82.4
ResNet-101 28.4 55.1R
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ResNet-152 60.0 85.5

CPM [76] CPM 74.0 89.4
Hourglass [77] Hourglass-4 77.6 88.5
MobileNetV2 [78] MobileNetV2 67.4 89.0

SimpleBaseline [24]
ResNet-50 75.2 89.5
ResNet-101 68.7 84.0
ResNet-152 71.4 87.1

HRNet [23] HRNet-W32 77.6 92.1
HRNet-W48 79.4 90.2

DarkPose [79]

ResNet-50 74.6 87.1
ResNet-101 74.6 88.7
ResNet-152 73.0 89.1
HRNet-W32 80.7 93.0
HRNet-W48 78.4 87.1

HRFormer [80] HRFormer-S 70.9 88.5

H
ea

tm
ap

-b
as

ed

HRFormer-B 75.6 88.4

Fig. A11: Additional visualization of the reference points
in the deformable attention module, with a blurring effect
applied based on the attention weights. We visualize the
reference points for each query (represented by each box in the
image) using the same color as the box. Each reference point
is blurred proportionally to its attention weight, with brighter
points indicating greater significance.

A5 DISCUSSION
We now discuss three topics related to the presented work in
greater depth.

A5.1 Data collection
Our proposed ChimpACT dataset is the first to achieve longitu-
dinal observation of the same social group over a span of four
years, which is invaluable for gaining meaningful insights into
chimpanzee growth and development. Unlike existing primate
datasets, which often consist of unrelated individuals [13] or
are gathered in laboratory settings [11], our dataset offers a
more holistic and natural perspective. However, this approach
comes with significant costs, requiring primatologists to engage
in long-term observation and filming. Additionally, the current
focal sampling methods may introduce biases.

In considering future data collection for chimpanzee be-
havior analysis, non-intrusive methods utilizing automated
technology for long-term capture should be prioritized. One

promising approach involves the strategic use of camera traps.
These devices can be discreetly placed within chimpanzee
habitats and programmed to automatically trigger and capture
footage when motion is detected. This method allows for con-
tinuous monitoring without human presence, thereby minimiz-
ing disturbances to the chimpanzees’ natural behaviors.

To ensure sustainability and practicality, these camera traps
could be designed with low power consumption features, en-
abling them to operate efficiently over extended periods. Fur-
thermore, integrating basic AI technologies could enable real-
time preprocessing of captured footage, potentially filtering out
irrelevant data and focusing on key behavioral events. This
approach could significantly reduce logistical challenges while
potentially increasing the volume and diversity of captured
behaviors, leading to even more comprehensive datasets for
future research.

A5.2 Perception of primates
Our approach, AlphaChimp, marks a significant advancement
as the first to simultaneously perceive and recognize chim-
panzee behaviors. This achievement builds upon leveraging
strong backbone models from object detection. Prior to our
work, there were no models specifically designed for chim-
panzee detection, and directly transferring human-centric mod-
els [44] yielded suboptimal results. This performance gap likely
stems from the inherent differences in appearance and social
dynamics between chimpanzees and humans.

Chimpanzees, as highly social animals, often stay in close
proximity to each other and share similar appearances. These
characteristics pose unique challenges for detection and track-
ing, as evidenced by the failure cases illustrated in Fig. A14.
Our method addresses these challenges by incorporating tem-
poral context, harnessing additional information from motion
to enhance detection capabilities.

While AlphaChimp demonstrates significant improvements
over existing algorithms, there remains room for further
refinement. Future work could focus on integrating more
chimpanzee-specific prior knowledge into the model. For in-
stance, incorporating facial features with distinctive patterns
could potentially enhance detection accuracy, particularly in
scenarios involving partial occlusion or ambiguous poses.

Moreover, exploring advanced techniques in multi-object
tracking and behavior recognition could further improve the
model’s performance in complex social scenarios. By combining
these enhancements with our current approach, we anticipate
developing more robust and accurate systems for primate
perception and behavior analysis, contributing to a deeper
understanding of chimpanzee social dynamics and individual
development.

A5.3 Understanding of primates
Automatically understanding chimpanzee behavior presents
significant challenges, requiring not only accurate detection
and categorization of chimpanzees but also precise behavior
estimation. Our approach, AlphaChimp, represents an initial
attempt in this complex domain. To enhance the estimation
of chimpanzee social behavior, we designed feature fusion in
both temporal and spatial domains and employed attention
mechanisms to compute relationships between chimpanzees
more effectively.

Drawing inspiration from human-centric understanding,
where pose estimation has proven valuable for behavior anal-
ysis, we considered using chimpanzee pose as an interme-
diate representation. However, this approach introduces new
complexities due to chimpanzees’ high degree of limb move-
ment freedom. Our attempts to incorporate pose estimation
in behavior analysis have thus far yielded suboptimal results,
highlighting the need for further exploration in this area.
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TABLE A6: Results of spatiotemporal action detection track on ChimpACT test set. “with GT box” and “with Det. box” mean
using GT bounding boxes or detected boxes, respectively.

Method mAP moving climbing sol. obj. playing eating grooming playing being begged from aggressing being nursed

with GT box
ACRN [84] 24.4 60.2 23.2 38.2 54.3 7.7 42.9 0.0 0.0 4.4
LFB [85] 22.4 45.3 10.0 34.4 56.3 8.7 51.0 0.4 0.0 32.1
SlowOnly [45] 24.5 56.1 31.6 41.0 45.4 10.4 43.0 0.0 0.0 7.5
SlowFast [45] 24.5 60.9 37.2 47.3 35.3 10.4 49.2 0.0 0.0 7.5
with Det. box
SlowOnly [45] 11.8 13.4 3.5 19.4 19.9 0.3 9.4 0.0 0.0 0.0
SlowOnly w. Ctx [45] 13.9 16.3 6.1 16.3 19.7 1.3 12.7 0.0 0.0 0.0
SlowFast [45] 13.5 18.4 3.5 19.8 18.4 0.1 5.5 0.0 0.0 0.0
SlowFast w. Ctx [45] 16.2 16.8 6.4 20.4 19.4 0.2 1.8 0.0 0.0 0.0
AlphaChimp (Ours) 34.3 33.3 33.4 37.1 55.0 1.9 48.9 0.3 0.0 74.0

Fig. A12: Additional visualization of AlphaChimp’s tracking results in different scenarios from ChimpACT test set. Consistent
colored boxes indicate successful tracking of the same chimpanzee across frames. The numbers represent the confidence scores of
chimpanzee classification.

The challenge of recognizing chimpanzee behavior is
merely the first step toward a deeper understanding of these
primates. Integrating insights from their social networks is
crucial for a comprehensive comprehension of the chimpanzee
world, which in turn can provide valuable insights into hu-

man social development. This underscores the importance of
developing more sophisticated models that can capture not
only individual behaviors but also complex social dynamics
and interactions.

Future research directions might include refining pose esti-
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Fig. A13: Additional visualization of AlphaChimp’s detection, tracking, and behavior detection results in different scenarios
from ChimpACT test set. Consistent colored boxes indicate successful tracking of the same chimpanzee across frames. The
numbers represent the confidence scores of chimpanzee classification.
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(a)

(c)

(b)

(d)
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Fig. A14: Typical failure cases of AlphaChimp’s on ChimpACT test set. (a-c) show the failure cases in chimpanzee detection and
tracking. (d-e) show the failure cases in chimpanzee behavior recognition.

mation techniques specifically tailored to chimpanzee anatomy
and movement patterns. Additionally, exploring alternative
intermediate representations could bridge the gap between raw
visual data and high-level behavior understanding. Develop-
ing methods to analyze long-term social patterns and group
dynamics from sequences of detected behaviors also presents a
promising avenue for advancement.

As we continue to progress in this field, the potential for
cross-disciplinary insights between primatology and human
social sciences grows. However, the path to fully understanding
chimpanzee behavior through automated means remains a

long and challenging journey, requiring ongoing collaboration
between computer vision experts and primatologists.


	Introduction
	Related work
	Computer vision for animals
	Human video datasets
	Datasets on primate behavioral understanding
	Computational methods for primate behavioral analysis

	
	Dataset description
	Dataset collection
	Dataset tasks and annotations
	AlphaChimp
	Multi-scale temporal feature extraction
	Temporal feature fusion
	Detection, categorization, and behavioral classification
	Benchmarking ChimpACT
	Detection, tracking, and 
	Pose estimation
	Spatiotemporal action detection
	AlphaChimp is the new 
	Implementation details
	Improvements over prior methods
	Ablation study
	Qualitative results

	Conclusion and future work
	References

	Additional details on 
	Ethogram
	Dataset details

	Discussion on 
	Benchmarking ChimpACT
	Detection, tracking, and 
	Pose estimation
	Spatiotemporal action detection
	Additional details on 
	Architecture details
	Implementation details
	Additional results
	Discussion
	Data collection
	Perception of primates
	Understanding of primates








